Metamath Proof Explorer


Theorem ppifi

Description: The set of primes less than A is a finite set. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion ppifi A 0 A Fin

Proof

Step Hyp Ref Expression
1 ppisval A 0 A = 2 A
2 fzfi 2 A Fin
3 inss1 2 A 2 A
4 ssfi 2 A Fin 2 A 2 A 2 A Fin
5 2 3 4 mp2an 2 A Fin
6 1 5 eqeltrdi A 0 A Fin