Metamath Proof Explorer


Theorem ppinncl

Description: Closure of the prime-counting function ppi in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppinncl A 2 A π _ A

Proof

Step Hyp Ref Expression
1 ppicl A π _ A 0
2 1 adantr A 2 A π _ A 0
3 2 nn0zd A 2 A π _ A
4 ppi2 π _ 2 = 1
5 2re 2
6 ppiwordi 2 A 2 A π _ 2 π _ A
7 5 6 mp3an1 A 2 A π _ 2 π _ A
8 4 7 eqbrtrrid A 2 A 1 π _ A
9 elnnz1 π _ A π _ A 1 π _ A
10 3 8 9 sylanbrc A 2 A π _ A