Metamath Proof Explorer


Theorem ppip1le

Description: The prime-counting function ppi cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppip1le A π _ A + 1 π _ A + 1

Proof

Step Hyp Ref Expression
1 flcl A A
2 zre A A
3 peano2re A A + 1
4 2 3 syl A A + 1
5 4 adantr A A + 1 A + 1
6 ppicl A + 1 π _ A + 1 0
7 5 6 syl A A + 1 π _ A + 1 0
8 7 nn0red A A + 1 π _ A + 1
9 ppiprm A A + 1 π _ A + 1 = π _ A + 1
10 8 9 eqled A A + 1 π _ A + 1 π _ A + 1
11 ppinprm A ¬ A + 1 π _ A + 1 = π _ A
12 ppicl A π _ A 0
13 2 12 syl A π _ A 0
14 13 nn0red A π _ A
15 14 adantr A ¬ A + 1 π _ A
16 15 lep1d A ¬ A + 1 π _ A π _ A + 1
17 11 16 eqbrtrd A ¬ A + 1 π _ A + 1 π _ A + 1
18 10 17 pm2.61dan A π _ A + 1 π _ A + 1
19 1 18 syl A π _ A + 1 π _ A + 1
20 1z 1
21 fladdz A 1 A + 1 = A + 1
22 20 21 mpan2 A A + 1 = A + 1
23 22 fveq2d A π _ A + 1 = π _ A + 1
24 peano2re A A + 1
25 ppifl A + 1 π _ A + 1 = π _ A + 1
26 24 25 syl A π _ A + 1 = π _ A + 1
27 23 26 eqtr3d A π _ A + 1 = π _ A + 1
28 ppifl A π _ A = π _ A
29 28 oveq1d A π _ A + 1 = π _ A + 1
30 19 27 29 3brtr3d A π _ A + 1 π _ A + 1