Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
inss1 |
|
3 |
|
ssfi |
|
4 |
1 2 3
|
sylancl |
|
5 |
|
zre |
|
6 |
5
|
adantr |
|
7 |
6
|
ltp1d |
|
8 |
|
peano2z |
|
9 |
8
|
adantr |
|
10 |
9
|
zred |
|
11 |
6 10
|
ltnled |
|
12 |
7 11
|
mpbid |
|
13 |
|
elinel1 |
|
14 |
|
elfzle2 |
|
15 |
13 14
|
syl |
|
16 |
12 15
|
nsyl |
|
17 |
|
ovex |
|
18 |
|
hashunsng |
|
19 |
17 18
|
ax-mp |
|
20 |
4 16 19
|
syl2anc |
|
21 |
|
ppival2 |
|
22 |
9 21
|
syl |
|
23 |
|
2z |
|
24 |
|
zcn |
|
25 |
24
|
adantr |
|
26 |
|
ax-1cn |
|
27 |
|
pncan |
|
28 |
25 26 27
|
sylancl |
|
29 |
|
prmuz2 |
|
30 |
29
|
adantl |
|
31 |
|
uz2m1nn |
|
32 |
30 31
|
syl |
|
33 |
28 32
|
eqeltrrd |
|
34 |
|
nnuz |
|
35 |
|
2m1e1 |
|
36 |
35
|
fveq2i |
|
37 |
34 36
|
eqtr4i |
|
38 |
33 37
|
eleqtrdi |
|
39 |
|
fzsuc2 |
|
40 |
23 38 39
|
sylancr |
|
41 |
40
|
ineq1d |
|
42 |
|
indir |
|
43 |
41 42
|
eqtrdi |
|
44 |
|
simpr |
|
45 |
44
|
snssd |
|
46 |
|
df-ss |
|
47 |
45 46
|
sylib |
|
48 |
47
|
uneq2d |
|
49 |
43 48
|
eqtrd |
|
50 |
49
|
fveq2d |
|
51 |
22 50
|
eqtrd |
|
52 |
|
ppival2 |
|
53 |
52
|
adantr |
|
54 |
53
|
oveq1d |
|
55 |
20 51 54
|
3eqtr4d |
|