Metamath Proof Explorer


Theorem ppisval2

Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppisval2 A 2 M 0 A = M A

Proof

Step Hyp Ref Expression
1 ppisval A 0 A = 2 A
2 1 adantr A 2 M 0 A = 2 A
3 fzss1 2 M 2 A M A
4 3 adantl A 2 M 2 A M A
5 4 ssrind A 2 M 2 A M A
6 simpr A 2 M x M A x M A
7 elin x M A x M A x
8 6 7 sylib A 2 M x M A x M A x
9 8 simprd A 2 M x M A x
10 prmuz2 x x 2
11 9 10 syl A 2 M x M A x 2
12 8 simpld A 2 M x M A x M A
13 elfzuz3 x M A A x
14 12 13 syl A 2 M x M A A x
15 elfzuzb x 2 A x 2 A x
16 11 14 15 sylanbrc A 2 M x M A x 2 A
17 16 9 elind A 2 M x M A x 2 A
18 5 17 eqelssd A 2 M 2 A = M A
19 2 18 eqtrd A 2 M 0 A = M A