Metamath Proof Explorer


Theorem ppival2

Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion ppival2 A π _ A = 2 A

Proof

Step Hyp Ref Expression
1 zre A A
2 ppival A π _ A = 0 A
3 1 2 syl A π _ A = 0 A
4 ppisval A 0 A = 2 A
5 1 4 syl A 0 A = 2 A
6 flid A A = A
7 6 oveq2d A 2 A = 2 A
8 7 ineq1d A 2 A = 2 A
9 5 8 eqtrd A 0 A = 2 A
10 9 fveq2d A 0 A = 2 A
11 3 10 eqtrd A π _ A = 2 A