Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
ppival2g
Next ⟩
ppif
Metamath Proof Explorer
Ascii
Unicode
Theorem
ppival2g
Description:
Value of the prime-counting function pi.
(Contributed by
Mario Carneiro
, 22-Sep-2014)
Ref
Expression
Assertion
ppival2g
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
π
_
⁡
A
=
M
…
A
∩
ℙ
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
2
1
adantr
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
A
∈
ℝ
3
ppival
⊢
A
∈
ℝ
→
π
_
⁡
A
=
0
A
∩
ℙ
4
2
3
syl
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
π
_
⁡
A
=
0
A
∩
ℙ
5
ppisval2
⊢
A
∈
ℝ
∧
2
∈
ℤ
≥
M
→
0
A
∩
ℙ
=
M
…
A
∩
ℙ
6
1
5
sylan
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
0
A
∩
ℙ
=
M
…
A
∩
ℙ
7
flid
⊢
A
∈
ℤ
→
A
=
A
8
7
oveq2d
⊢
A
∈
ℤ
→
M
…
A
=
M
…
A
9
8
ineq1d
⊢
A
∈
ℤ
→
M
…
A
∩
ℙ
=
M
…
A
∩
ℙ
10
9
adantr
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
M
…
A
∩
ℙ
=
M
…
A
∩
ℙ
11
6
10
eqtrd
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
0
A
∩
ℙ
=
M
…
A
∩
ℙ
12
11
fveq2d
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
0
A
∩
ℙ
=
M
…
A
∩
ℙ
13
4
12
eqtrd
⊢
A
∈
ℤ
∧
2
∈
ℤ
≥
M
→
π
_
⁡
A
=
M
…
A
∩
ℙ