Metamath Proof Explorer


Theorem ppival2g

Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppival2g A 2 M π _ A = M A

Proof

Step Hyp Ref Expression
1 zre A A
2 1 adantr A 2 M A
3 ppival A π _ A = 0 A
4 2 3 syl A 2 M π _ A = 0 A
5 ppisval2 A 2 M 0 A = M A
6 1 5 sylan A 2 M 0 A = M A
7 flid A A = A
8 7 oveq2d A M A = M A
9 8 ineq1d A M A = M A
10 9 adantr A 2 M M A = M A
11 6 10 eqtrd A 2 M 0 A = M A
12 11 fveq2d A 2 M 0 A = M A
13 4 12 eqtrd A 2 M π _ A = M A