Metamath Proof Explorer


Theorem ppiwordi

Description: The prime-counting function ppi is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014)

Ref Expression
Assertion ppiwordi A B A B π _ A π _ B

Proof

Step Hyp Ref Expression
1 simp2 A B A B B
2 ppifi B 0 B Fin
3 1 2 syl A B A B 0 B Fin
4 0red A B A B 0
5 0le0 0 0
6 5 a1i A B A B 0 0
7 simp3 A B A B A B
8 iccss 0 B 0 0 A B 0 A 0 B
9 4 1 6 7 8 syl22anc A B A B 0 A 0 B
10 9 ssrind A B A B 0 A 0 B
11 ssdomg 0 B Fin 0 A 0 B 0 A 0 B
12 3 10 11 sylc A B A B 0 A 0 B
13 ppifi A 0 A Fin
14 13 3ad2ant1 A B A B 0 A Fin
15 hashdom 0 A Fin 0 B Fin 0 A 0 B 0 A 0 B
16 14 3 15 syl2anc A B A B 0 A 0 B 0 A 0 B
17 12 16 mpbird A B A B 0 A 0 B
18 ppival A π _ A = 0 A
19 18 3ad2ant1 A B A B π _ A = 0 A
20 ppival B π _ B = 0 B
21 1 20 syl A B A B π _ B = 0 B
22 17 19 21 3brtr4d A B A B π _ A π _ B