Metamath Proof Explorer


Theorem ppiwordi

Description: The prime-counting function ppi is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014)

Ref Expression
Assertion ppiwordi ABABπ_Aπ_B

Proof

Step Hyp Ref Expression
1 simp2 ABABB
2 ppifi B0BFin
3 1 2 syl ABAB0BFin
4 0red ABAB0
5 0le0 00
6 5 a1i ABAB00
7 simp3 ABABAB
8 iccss 0B00AB0A0B
9 4 1 6 7 8 syl22anc ABAB0A0B
10 9 ssrind ABAB0A0B
11 ssdomg 0BFin0A0B0A0B
12 3 10 11 sylc ABAB0A0B
13 ppifi A0AFin
14 13 3ad2ant1 ABAB0AFin
15 hashdom 0AFin0BFin0A0B0A0B
16 14 3 15 syl2anc ABAB0A0B0A0B
17 12 16 mpbird ABAB0A0B
18 ppival Aπ_A=0A
19 18 3ad2ant1 ABABπ_A=0A
20 ppival Bπ_B=0B
21 1 20 syl ABABπ_B=0B
22 17 19 21 3brtr4d ABABπ_Aπ_B