Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
ppncan
Next ⟩
addsub4
Metamath Proof Explorer
Ascii
Unicode
Theorem
ppncan
Description:
Cancellation law for mixed addition and subtraction.
(Contributed by
NM
, 30-Jun-2005)
Ref
Expression
Assertion
ppncan
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
+
C
−
B
=
A
+
C
Proof
Step
Hyp
Ref
Expression
1
addcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
=
B
+
A
2
1
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
=
B
+
A
3
2
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
-
B
−
C
=
B
+
A
-
B
−
C
4
addcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
∈
ℂ
5
4
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
∈
ℂ
6
subsub2
⊢
A
+
B
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
-
B
−
C
=
A
+
B
+
C
−
B
7
5
6
syld3an1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
-
B
−
C
=
A
+
B
+
C
−
B
8
pnncan
⊢
B
∈
ℂ
∧
A
∈
ℂ
∧
C
∈
ℂ
→
B
+
A
-
B
−
C
=
A
+
C
9
8
3com12
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
A
-
B
−
C
=
A
+
C
10
3
7
9
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
+
C
−
B
=
A
+
C