Metamath Proof Explorer


Theorem pptbas

Description: The particular point topology is generated by a basis consisting of pairs { x , P } for each x e. A . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion pptbas A V P A x 𝒫 A | P x x = = topGen ran x A x P

Proof

Step Hyp Ref Expression
1 ppttop A V P A y 𝒫 A | P y y = TopOn A
2 topontop y 𝒫 A | P y y = TopOn A y 𝒫 A | P y y = Top
3 1 2 syl A V P A y 𝒫 A | P y y = Top
4 eleq2 y = x P P y P x P
5 eqeq1 y = x P y = x P =
6 4 5 orbi12d y = x P P y y = P x P x P =
7 simpr A V P A x A x A
8 simplr A V P A x A P A
9 7 8 prssd A V P A x A x P A
10 prex x P V
11 10 elpw x P 𝒫 A x P A
12 9 11 sylibr A V P A x A x P 𝒫 A
13 prid2g P A P x P
14 13 ad2antlr A V P A x A P x P
15 14 orcd A V P A x A P x P x P =
16 6 12 15 elrabd A V P A x A x P y 𝒫 A | P y y =
17 16 fmpttd A V P A x A x P : A y 𝒫 A | P y y =
18 17 frnd A V P A ran x A x P y 𝒫 A | P y y =
19 eleq2 y = z P y P z
20 eqeq1 y = z y = z =
21 19 20 orbi12d y = z P y y = P z z =
22 21 elrab z y 𝒫 A | P y y = z 𝒫 A P z z =
23 elpwi z 𝒫 A z A
24 23 ad2antrl A V P A z 𝒫 A P z z = z A
25 24 sselda A V P A z 𝒫 A P z z = w z w A
26 prid1g w z w w P
27 26 adantl A V P A z 𝒫 A P z z = w z w w P
28 simpr A V P A z 𝒫 A P z z = w z w z
29 n0i w z ¬ z =
30 29 adantl A V P A z 𝒫 A P z z = w z ¬ z =
31 simplrr A V P A z 𝒫 A P z z = w z P z z =
32 31 ord A V P A z 𝒫 A P z z = w z ¬ P z z =
33 30 32 mt3d A V P A z 𝒫 A P z z = w z P z
34 28 33 prssd A V P A z 𝒫 A P z z = w z w P z
35 preq1 x = w x P = w P
36 35 eleq2d x = w w x P w w P
37 35 sseq1d x = w x P z w P z
38 36 37 anbi12d x = w w x P x P z w w P w P z
39 38 rspcev w A w w P w P z x A w x P x P z
40 25 27 34 39 syl12anc A V P A z 𝒫 A P z z = w z x A w x P x P z
41 10 rgenw x A x P V
42 eqid x A x P = x A x P
43 eleq2 v = x P w v w x P
44 sseq1 v = x P v z x P z
45 43 44 anbi12d v = x P w v v z w x P x P z
46 42 45 rexrnmptw x A x P V v ran x A x P w v v z x A w x P x P z
47 41 46 ax-mp v ran x A x P w v v z x A w x P x P z
48 40 47 sylibr A V P A z 𝒫 A P z z = w z v ran x A x P w v v z
49 48 ralrimiva A V P A z 𝒫 A P z z = w z v ran x A x P w v v z
50 49 ex A V P A z 𝒫 A P z z = w z v ran x A x P w v v z
51 22 50 syl5bi A V P A z y 𝒫 A | P y y = w z v ran x A x P w v v z
52 51 ralrimiv A V P A z y 𝒫 A | P y y = w z v ran x A x P w v v z
53 basgen2 y 𝒫 A | P y y = Top ran x A x P y 𝒫 A | P y y = z y 𝒫 A | P y y = w z v ran x A x P w v v z topGen ran x A x P = y 𝒫 A | P y y =
54 3 18 52 53 syl3anc A V P A topGen ran x A x P = y 𝒫 A | P y y =
55 eleq2 y = x P y P x
56 eqeq1 y = x y = x =
57 55 56 orbi12d y = x P y y = P x x =
58 57 cbvrabv y 𝒫 A | P y y = = x 𝒫 A | P x x =
59 54 58 eqtr2di A V P A x 𝒫 A | P x x = = topGen ran x A x P