| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ppttop |
|
| 2 |
|
topontop |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
eleq2 |
|
| 5 |
|
eqeq1 |
|
| 6 |
4 5
|
orbi12d |
|
| 7 |
|
simpr |
|
| 8 |
|
simplr |
|
| 9 |
7 8
|
prssd |
|
| 10 |
|
prex |
|
| 11 |
10
|
elpw |
|
| 12 |
9 11
|
sylibr |
|
| 13 |
|
prid2g |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
14
|
orcd |
|
| 16 |
6 12 15
|
elrabd |
|
| 17 |
16
|
fmpttd |
|
| 18 |
17
|
frnd |
|
| 19 |
|
eleq2 |
|
| 20 |
|
eqeq1 |
|
| 21 |
19 20
|
orbi12d |
|
| 22 |
21
|
elrab |
|
| 23 |
|
elpwi |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
24
|
sselda |
|
| 26 |
|
prid1g |
|
| 27 |
26
|
adantl |
|
| 28 |
|
simpr |
|
| 29 |
|
n0i |
|
| 30 |
29
|
adantl |
|
| 31 |
|
simplrr |
|
| 32 |
31
|
ord |
|
| 33 |
30 32
|
mt3d |
|
| 34 |
28 33
|
prssd |
|
| 35 |
|
preq1 |
|
| 36 |
35
|
eleq2d |
|
| 37 |
35
|
sseq1d |
|
| 38 |
36 37
|
anbi12d |
|
| 39 |
38
|
rspcev |
|
| 40 |
25 27 34 39
|
syl12anc |
|
| 41 |
10
|
rgenw |
|
| 42 |
|
eqid |
|
| 43 |
|
eleq2 |
|
| 44 |
|
sseq1 |
|
| 45 |
43 44
|
anbi12d |
|
| 46 |
42 45
|
rexrnmptw |
|
| 47 |
41 46
|
ax-mp |
|
| 48 |
40 47
|
sylibr |
|
| 49 |
48
|
ralrimiva |
|
| 50 |
49
|
ex |
|
| 51 |
22 50
|
biimtrid |
|
| 52 |
51
|
ralrimiv |
|
| 53 |
|
basgen2 |
|
| 54 |
3 18 52 53
|
syl3anc |
|
| 55 |
|
eleq2 |
|
| 56 |
|
eqeq1 |
|
| 57 |
55 56
|
orbi12d |
|
| 58 |
57
|
cbvrabv |
|
| 59 |
54 58
|
eqtr2di |
|