Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab |
|
2 |
|
eleq2 |
|
3 |
|
eqeq1 |
|
4 |
2 3
|
orbi12d |
|
5 |
|
simprl |
|
6 |
|
sspwuni |
|
7 |
5 6
|
sylib |
|
8 |
|
vuniex |
|
9 |
8
|
elpw |
|
10 |
7 9
|
sylibr |
|
11 |
|
neq0 |
|
12 |
|
eluni2 |
|
13 |
|
r19.29 |
|
14 |
|
n0i |
|
15 |
14
|
adantl |
|
16 |
|
simpl |
|
17 |
16
|
ord |
|
18 |
15 17
|
mt3d |
|
19 |
|
simpl |
|
20 |
|
elunii |
|
21 |
18 19 20
|
syl2an2 |
|
22 |
21
|
rexlimiva |
|
23 |
13 22
|
syl |
|
24 |
23
|
ex |
|
25 |
24
|
ad2antll |
|
26 |
12 25
|
syl5bi |
|
27 |
26
|
exlimdv |
|
28 |
11 27
|
syl5bi |
|
29 |
28
|
con1d |
|
30 |
29
|
orrd |
|
31 |
4 10 30
|
elrabd |
|
32 |
31
|
ex |
|
33 |
1 32
|
syl5bi |
|
34 |
33
|
alrimiv |
|
35 |
|
eleq2 |
|
36 |
|
eqeq1 |
|
37 |
35 36
|
orbi12d |
|
38 |
37
|
elrab |
|
39 |
|
eleq2 |
|
40 |
|
eqeq1 |
|
41 |
39 40
|
orbi12d |
|
42 |
41
|
elrab |
|
43 |
38 42
|
anbi12i |
|
44 |
|
eleq2 |
|
45 |
|
eqeq1 |
|
46 |
44 45
|
orbi12d |
|
47 |
|
inss1 |
|
48 |
|
simprll |
|
49 |
48
|
elpwid |
|
50 |
47 49
|
sstrid |
|
51 |
|
vex |
|
52 |
51
|
inex1 |
|
53 |
52
|
elpw |
|
54 |
50 53
|
sylibr |
|
55 |
|
ianor |
|
56 |
|
elin |
|
57 |
55 56
|
xchnxbir |
|
58 |
|
simprlr |
|
59 |
58
|
ord |
|
60 |
|
simprrr |
|
61 |
60
|
ord |
|
62 |
59 61
|
orim12d |
|
63 |
57 62
|
syl5bi |
|
64 |
|
inss |
|
65 |
|
ss0b |
|
66 |
|
ss0b |
|
67 |
65 66
|
orbi12i |
|
68 |
|
ss0b |
|
69 |
64 67 68
|
3imtr3i |
|
70 |
63 69
|
syl6 |
|
71 |
70
|
orrd |
|
72 |
46 54 71
|
elrabd |
|
73 |
72
|
ex |
|
74 |
43 73
|
syl5bi |
|
75 |
74
|
ralrimivv |
|
76 |
|
pwexg |
|
77 |
76
|
adantr |
|
78 |
|
rabexg |
|
79 |
|
istopg |
|
80 |
77 78 79
|
3syl |
|
81 |
34 75 80
|
mpbir2and |
|
82 |
|
eleq2 |
|
83 |
|
eqeq1 |
|
84 |
82 83
|
orbi12d |
|
85 |
|
pwidg |
|
86 |
85
|
adantr |
|
87 |
|
animorrl |
|
88 |
84 86 87
|
elrabd |
|
89 |
|
elssuni |
|
90 |
88 89
|
syl |
|
91 |
|
ssrab2 |
|
92 |
|
sspwuni |
|
93 |
91 92
|
mpbi |
|
94 |
93
|
a1i |
|
95 |
90 94
|
eqssd |
|
96 |
|
istopon |
|
97 |
81 95 96
|
sylanbrc |
|