Metamath Proof Explorer


Theorem pr2ne

Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010)

Ref Expression
Assertion pr2ne A C B D A B 2 𝑜 A B

Proof

Step Hyp Ref Expression
1 preq2 B = A A B = A A
2 1 eqcoms A = B A B = A A
3 enpr1g A C A A 1 𝑜
4 entr A B A A A A 1 𝑜 A B 1 𝑜
5 1sdom2 1 𝑜 2 𝑜
6 sdomnen 1 𝑜 2 𝑜 ¬ 1 𝑜 2 𝑜
7 5 6 ax-mp ¬ 1 𝑜 2 𝑜
8 ensym A B 1 𝑜 1 𝑜 A B
9 entr 1 𝑜 A B A B 2 𝑜 1 𝑜 2 𝑜
10 9 ex 1 𝑜 A B A B 2 𝑜 1 𝑜 2 𝑜
11 8 10 syl A B 1 𝑜 A B 2 𝑜 1 𝑜 2 𝑜
12 7 11 mtoi A B 1 𝑜 ¬ A B 2 𝑜
13 12 a1d A B 1 𝑜 A C B D ¬ A B 2 𝑜
14 4 13 syl A B A A A A 1 𝑜 A C B D ¬ A B 2 𝑜
15 14 ex A B A A A A 1 𝑜 A C B D ¬ A B 2 𝑜
16 prex A B V
17 eqeng A B V A B = A A A B A A
18 16 17 ax-mp A B = A A A B A A
19 15 18 syl11 A A 1 𝑜 A B = A A A C B D ¬ A B 2 𝑜
20 19 a1dd A A 1 𝑜 A B = A A B D A C B D ¬ A B 2 𝑜
21 3 20 syl A C A B = A A B D A C B D ¬ A B 2 𝑜
22 21 com23 A C B D A B = A A A C B D ¬ A B 2 𝑜
23 22 imp A C B D A B = A A A C B D ¬ A B 2 𝑜
24 23 pm2.43a A C B D A B = A A ¬ A B 2 𝑜
25 2 24 syl5 A C B D A = B ¬ A B 2 𝑜
26 25 necon2ad A C B D A B 2 𝑜 A B
27 pr2nelem A C B D A B A B 2 𝑜
28 27 3expia A C B D A B A B 2 𝑜
29 26 28 impbid A C B D A B 2 𝑜 A B