Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
pr2nelem
Next ⟩
pr2ne
Metamath Proof Explorer
Ascii
Unicode
Theorem
pr2nelem
Description:
Lemma for
pr2ne
.
(Contributed by
FL
, 17-Aug-2008)
Ref
Expression
Assertion
pr2nelem
⊢
A
∈
C
∧
B
∈
D
∧
A
≠
B
→
A
B
≈
2
𝑜
Proof
Step
Hyp
Ref
Expression
1
disjsn2
⊢
A
≠
B
→
A
∩
B
=
∅
2
ensn1g
⊢
A
∈
C
→
A
≈
1
𝑜
3
ensn1g
⊢
B
∈
D
→
B
≈
1
𝑜
4
pm54.43
⊢
A
≈
1
𝑜
∧
B
≈
1
𝑜
→
A
∩
B
=
∅
↔
A
∪
B
≈
2
𝑜
5
df-pr
⊢
A
B
=
A
∪
B
6
5
breq1i
⊢
A
B
≈
2
𝑜
↔
A
∪
B
≈
2
𝑜
7
4
6
bitr4di
⊢
A
≈
1
𝑜
∧
B
≈
1
𝑜
→
A
∩
B
=
∅
↔
A
B
≈
2
𝑜
8
7
biimpd
⊢
A
≈
1
𝑜
∧
B
≈
1
𝑜
→
A
∩
B
=
∅
→
A
B
≈
2
𝑜
9
2
3
8
syl2an
⊢
A
∈
C
∧
B
∈
D
→
A
∩
B
=
∅
→
A
B
≈
2
𝑜
10
9
ex
⊢
A
∈
C
→
B
∈
D
→
A
∩
B
=
∅
→
A
B
≈
2
𝑜
11
1
10
syl7
⊢
A
∈
C
→
B
∈
D
→
A
≠
B
→
A
B
≈
2
𝑜
12
11
3imp
⊢
A
∈
C
∧
B
∈
D
∧
A
≠
B
→
A
B
≈
2
𝑜