Metamath Proof Explorer


Theorem pr2pwpr

Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018)

Ref Expression
Assertion pr2pwpr A V B W A B p 𝒫 A B | p 2 𝑜 = A B

Proof

Step Hyp Ref Expression
1 elpwi s 𝒫 A B s A B
2 prfi A B Fin
3 ssfi A B Fin s A B s Fin
4 2 3 mpan s A B s Fin
5 hash2 2 𝑜 = 2
6 5 eqcomi 2 = 2 𝑜
7 6 a1i s Fin 2 = 2 𝑜
8 7 eqeq2d s Fin s = 2 s = 2 𝑜
9 2onn 2 𝑜 ω
10 nnfi 2 𝑜 ω 2 𝑜 Fin
11 9 10 ax-mp 2 𝑜 Fin
12 hashen s Fin 2 𝑜 Fin s = 2 𝑜 s 2 𝑜
13 11 12 mpan2 s Fin s = 2 𝑜 s 2 𝑜
14 8 13 bitrd s Fin s = 2 s 2 𝑜
15 hash2pwpr s = 2 s 𝒫 A B s = A B
16 15 a1d s = 2 s 𝒫 A B A V B W A B s = A B
17 16 ex s = 2 s 𝒫 A B A V B W A B s = A B
18 14 17 syl6bir s Fin s 2 𝑜 s 𝒫 A B A V B W A B s = A B
19 18 com23 s Fin s 𝒫 A B s 2 𝑜 A V B W A B s = A B
20 4 19 syl s A B s 𝒫 A B s 2 𝑜 A V B W A B s = A B
21 1 20 mpcom s 𝒫 A B s 2 𝑜 A V B W A B s = A B
22 21 imp s 𝒫 A B s 2 𝑜 A V B W A B s = A B
23 22 com12 A V B W A B s 𝒫 A B s 2 𝑜 s = A B
24 prex A B V
25 24 prid2 A B B A B
26 25 a1i A V B W A B A B B A B
27 26 olcd A V B W A B A B A A B B A B
28 elun A B A B A B A B A A B B A B
29 27 28 sylibr A V B W A B A B A B A B
30 pwpr 𝒫 A B = A B A B
31 29 30 eleqtrrdi A V B W A B A B 𝒫 A B
32 31 adantr A V B W A B s = A B A B 𝒫 A B
33 eleq1 s = A B s 𝒫 A B A B 𝒫 A B
34 33 adantl A V B W A B s = A B s 𝒫 A B A B 𝒫 A B
35 32 34 mpbird A V B W A B s = A B s 𝒫 A B
36 pr2nelem A V B W A B A B 2 𝑜
37 36 adantr A V B W A B s = A B A B 2 𝑜
38 breq1 s = A B s 2 𝑜 A B 2 𝑜
39 38 adantl A V B W A B s = A B s 2 𝑜 A B 2 𝑜
40 37 39 mpbird A V B W A B s = A B s 2 𝑜
41 35 40 jca A V B W A B s = A B s 𝒫 A B s 2 𝑜
42 41 ex A V B W A B s = A B s 𝒫 A B s 2 𝑜
43 23 42 impbid A V B W A B s 𝒫 A B s 2 𝑜 s = A B
44 breq1 p = s p 2 𝑜 s 2 𝑜
45 44 elrab s p 𝒫 A B | p 2 𝑜 s 𝒫 A B s 2 𝑜
46 velsn s A B s = A B
47 43 45 46 3bitr4g A V B W A B s p 𝒫 A B | p 2 𝑜 s A B
48 47 eqrdv A V B W A B p 𝒫 A B | p 2 𝑜 = A B