Metamath Proof Explorer


Theorem prcdnq

Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of Gleason p. 121. (Contributed by NM, 25-Feb-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prcdnq A 𝑷 B A C < 𝑸 B C A

Proof

Step Hyp Ref Expression
1 ltrelnq < 𝑸 𝑸 × 𝑸
2 relxp Rel 𝑸 × 𝑸
3 relss < 𝑸 𝑸 × 𝑸 Rel 𝑸 × 𝑸 Rel < 𝑸
4 1 2 3 mp2 Rel < 𝑸
5 4 brrelex1i C < 𝑸 B C V
6 eleq1 x = B x A B A
7 6 anbi2d x = B A 𝑷 x A A 𝑷 B A
8 breq2 x = B y < 𝑸 x y < 𝑸 B
9 7 8 anbi12d x = B A 𝑷 x A y < 𝑸 x A 𝑷 B A y < 𝑸 B
10 9 imbi1d x = B A 𝑷 x A y < 𝑸 x y A A 𝑷 B A y < 𝑸 B y A
11 breq1 y = C y < 𝑸 B C < 𝑸 B
12 11 anbi2d y = C A 𝑷 B A y < 𝑸 B A 𝑷 B A C < 𝑸 B
13 eleq1 y = C y A C A
14 12 13 imbi12d y = C A 𝑷 B A y < 𝑸 B y A A 𝑷 B A C < 𝑸 B C A
15 elnpi A 𝑷 A V A A 𝑸 x A y y < 𝑸 x y A y A x < 𝑸 y
16 15 simprbi A 𝑷 x A y y < 𝑸 x y A y A x < 𝑸 y
17 16 r19.21bi A 𝑷 x A y y < 𝑸 x y A y A x < 𝑸 y
18 17 simpld A 𝑷 x A y y < 𝑸 x y A
19 18 19.21bi A 𝑷 x A y < 𝑸 x y A
20 19 imp A 𝑷 x A y < 𝑸 x y A
21 10 14 20 vtocl2g B A C V A 𝑷 B A C < 𝑸 B C A
22 5 21 sylan2 B A C < 𝑸 B A 𝑷 B A C < 𝑸 B C A
23 22 adantll A 𝑷 B A C < 𝑸 B A 𝑷 B A C < 𝑸 B C A
24 23 pm2.43i A 𝑷 B A C < 𝑸 B C A
25 24 ex A 𝑷 B A C < 𝑸 B C A