Metamath Proof Explorer


Theorem prcliscplgr

Description: A proper class (representing a null graph, see vtxvalprc ) has the property of a complete graph (see also cplgr0v ), but cannot be an element of ComplGraph , of course. Because of this, a sethood antecedent like G e. W is necessary in the following theorems like iscplgr . (Contributed by AV, 14-Feb-2022)

Ref Expression
Hypothesis cplgruvtxb.v V = Vtx G
Assertion prcliscplgr ¬ G V v V v UnivVtx G

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v V = Vtx G
2 fvprc ¬ G V Vtx G =
3 1 eqeq1i V = Vtx G =
4 rzal V = v V v UnivVtx G
5 3 4 sylbir Vtx G = v V v UnivVtx G
6 2 5 syl ¬ G V v V v UnivVtx G