Metamath Proof Explorer


Theorem prdom2

Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion prdom2 A C B D A B 2 𝑜

Proof

Step Hyp Ref Expression
1 dfsn2 A = A A
2 ensn1g A C A 1 𝑜
3 endom A 1 𝑜 A 1 𝑜
4 1sdom2 1 𝑜 2 𝑜
5 domsdomtr A 1 𝑜 1 𝑜 2 𝑜 A 2 𝑜
6 sdomdom A 2 𝑜 A 2 𝑜
7 5 6 syl A 1 𝑜 1 𝑜 2 𝑜 A 2 𝑜
8 3 4 7 sylancl A 1 𝑜 A 2 𝑜
9 2 8 syl A C A 2 𝑜
10 1 9 eqbrtrrid A C A A 2 𝑜
11 preq2 B = A A B = A A
12 11 breq1d B = A A B 2 𝑜 A A 2 𝑜
13 10 12 syl5ibr B = A A C A B 2 𝑜
14 13 eqcoms A = B A C A B 2 𝑜
15 14 adantrd A = B A C B D A B 2 𝑜
16 pr2ne A C B D A B 2 𝑜 A B
17 16 biimprd A C B D A B A B 2 𝑜
18 endom A B 2 𝑜 A B 2 𝑜
19 17 18 syl6com A B A C B D A B 2 𝑜
20 15 19 pm2.61ine A C B D A B 2 𝑜