Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Definition and basic properties of monoids
prds0g
Next ⟩
pwsmnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
prds0g
Description:
Zero in a product of monoids.
(Contributed by
Stefan O'Rear
, 10-Jan-2015)
Ref
Expression
Hypotheses
prdsmndd.y
⊢
Y
=
S
⨉
𝑠
R
prdsmndd.i
⊢
φ
→
I
∈
W
prdsmndd.s
⊢
φ
→
S
∈
V
prdsmndd.r
⊢
φ
→
R
:
I
⟶
Mnd
Assertion
prds0g
⊢
φ
→
0
𝑔
∘
R
=
0
Y
Proof
Step
Hyp
Ref
Expression
1
prdsmndd.y
⊢
Y
=
S
⨉
𝑠
R
2
prdsmndd.i
⊢
φ
→
I
∈
W
3
prdsmndd.s
⊢
φ
→
S
∈
V
4
prdsmndd.r
⊢
φ
→
R
:
I
⟶
Mnd
5
eqid
⊢
Base
Y
=
Base
Y
6
eqid
⊢
+
Y
=
+
Y
7
3
elexd
⊢
φ
→
S
∈
V
8
2
elexd
⊢
φ
→
I
∈
V
9
eqid
⊢
0
𝑔
∘
R
=
0
𝑔
∘
R
10
1
5
6
7
8
4
9
prdsidlem
⊢
φ
→
0
𝑔
∘
R
∈
Base
Y
∧
∀
b
∈
Base
Y
0
𝑔
∘
R
+
Y
b
=
b
∧
b
+
Y
0
𝑔
∘
R
=
b
11
eqid
⊢
0
Y
=
0
Y
12
1
2
3
4
prdsmndd
⊢
φ
→
Y
∈
Mnd
13
5
6
mndid
⊢
Y
∈
Mnd
→
∃
a
∈
Base
Y
∀
b
∈
Base
Y
a
+
Y
b
=
b
∧
b
+
Y
a
=
b
14
12
13
syl
⊢
φ
→
∃
a
∈
Base
Y
∀
b
∈
Base
Y
a
+
Y
b
=
b
∧
b
+
Y
a
=
b
15
5
11
6
14
ismgmid
⊢
φ
→
0
𝑔
∘
R
∈
Base
Y
∧
∀
b
∈
Base
Y
0
𝑔
∘
R
+
Y
b
=
b
∧
b
+
Y
0
𝑔
∘
R
=
b
↔
0
Y
=
0
𝑔
∘
R
16
10
15
mpbid
⊢
φ
→
0
Y
=
0
𝑔
∘
R
17
16
eqcomd
⊢
φ
→
0
𝑔
∘
R
=
0
Y