Metamath Proof Explorer


Theorem prds1

Description: Value of the ring unit in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses prds1.y Y = S 𝑠 R
prds1.i φ I W
prds1.s φ S V
prds1.r φ R : I Ring
Assertion prds1 φ 1 r R = 1 Y

Proof

Step Hyp Ref Expression
1 prds1.y Y = S 𝑠 R
2 prds1.i φ I W
3 prds1.s φ S V
4 prds1.r φ R : I Ring
5 eqid S 𝑠 mulGrp R = S 𝑠 mulGrp R
6 mgpf mulGrp Ring : Ring Mnd
7 fco2 mulGrp Ring : Ring Mnd R : I Ring mulGrp R : I Mnd
8 6 4 7 sylancr φ mulGrp R : I Mnd
9 5 2 3 8 prds0g φ 0 𝑔 mulGrp R = 0 S 𝑠 mulGrp R
10 eqidd φ Base mulGrp Y = Base mulGrp Y
11 eqid mulGrp Y = mulGrp Y
12 4 ffnd φ R Fn I
13 1 11 5 2 3 12 prdsmgp φ Base mulGrp Y = Base S 𝑠 mulGrp R + mulGrp Y = + S 𝑠 mulGrp R
14 13 simpld φ Base mulGrp Y = Base S 𝑠 mulGrp R
15 13 simprd φ + mulGrp Y = + S 𝑠 mulGrp R
16 15 oveqdr φ x Base mulGrp Y y Base mulGrp Y x + mulGrp Y y = x + S 𝑠 mulGrp R y
17 10 14 16 grpidpropd φ 0 mulGrp Y = 0 S 𝑠 mulGrp R
18 9 17 eqtr4d φ 0 𝑔 mulGrp R = 0 mulGrp Y
19 df-ur 1 r = 0 𝑔 mulGrp
20 19 coeq1i 1 r R = 0 𝑔 mulGrp R
21 coass 0 𝑔 mulGrp R = 0 𝑔 mulGrp R
22 20 21 eqtri 1 r R = 0 𝑔 mulGrp R
23 eqid 1 Y = 1 Y
24 11 23 ringidval 1 Y = 0 mulGrp Y
25 18 22 24 3eqtr4g φ 1 r R = 1 Y