Metamath Proof Explorer


Theorem prdsabld

Description: The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdscmnd.y Y = S 𝑠 R
prdscmnd.i φ I W
prdscmnd.s φ S V
prdsgabld.r φ R : I Abel
Assertion prdsabld φ Y Abel

Proof

Step Hyp Ref Expression
1 prdscmnd.y Y = S 𝑠 R
2 prdscmnd.i φ I W
3 prdscmnd.s φ S V
4 prdsgabld.r φ R : I Abel
5 ablgrp a Abel a Grp
6 5 ssriv Abel Grp
7 fss R : I Abel Abel Grp R : I Grp
8 4 6 7 sylancl φ R : I Grp
9 1 2 3 8 prdsgrpd φ Y Grp
10 ablcmn a Abel a CMnd
11 10 ssriv Abel CMnd
12 fss R : I Abel Abel CMnd R : I CMnd
13 4 11 12 sylancl φ R : I CMnd
14 1 2 3 13 prdscmnd φ Y CMnd
15 isabl Y Abel Y Grp Y CMnd
16 9 14 15 sylanbrc φ Y Abel