Metamath Proof Explorer


Theorem prdsbas

Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
Assertion prdsbas φ B = x I Base R x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 eqid Base S = Base S
7 eqidd φ x I Base R x = x I Base R x
8 eqidd φ f x I Base R x , g x I Base R x x I f x + R x g x = f x I Base R x , g x I Base R x x I f x + R x g x
9 eqidd φ f x I Base R x , g x I Base R x x I f x R x g x = f x I Base R x , g x I Base R x x I f x R x g x
10 eqidd φ f Base S , g x I Base R x x I f R x g x = f Base S , g x I Base R x x I f R x g x
11 eqidd φ f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x = f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x
12 eqidd φ 𝑡 TopOpen R = 𝑡 TopOpen R
13 eqidd φ f g | f g x I Base R x x I f x R x g x = f g | f g x I Base R x x I f x R x g x
14 eqidd φ f x I Base R x , g x I Base R x sup ran x I f x dist R x g x 0 * < = f x I Base R x , g x I Base R x sup ran x I f x dist R x g x 0 * <
15 eqidd φ f x I Base R x , g x I Base R x x I f x Hom R x g x = f x I Base R x , g x I Base R x x I f x Hom R x g x
16 eqidd φ a x I Base R x × x I Base R x , c x I Base R x d c f x I Base R x , g x I Base R x x I f x Hom R x g x 2 nd a , e f x I Base R x , g x I Base R x x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x = a x I Base R x × x I Base R x , c x I Base R x d c f x I Base R x , g x I Base R x x I f x Hom R x g x 2 nd a , e f x I Base R x , g x I Base R x x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
17 1 6 5 7 8 9 10 11 12 13 14 15 16 2 3 prdsval φ P = Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x Scalar ndx S ndx f Base S , g x I Base R x x I f R x g x 𝑖 ndx f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g x I Base R x x I f x R x g x dist ndx f x I Base R x , g x I Base R x sup ran x I f x dist R x g x 0 * < Hom ndx f x I Base R x , g x I Base R x x I f x Hom R x g x comp ndx a x I Base R x × x I Base R x , c x I Base R x d c f x I Base R x , g x I Base R x x I f x Hom R x g x 2 nd a , e f x I Base R x , g x I Base R x x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
18 baseid Base = Slot Base ndx
19 18 strfvss Base R x ran R x
20 fvssunirn R x ran R
21 rnss R x ran R ran R x ran ran R
22 uniss ran R x ran ran R ran R x ran ran R
23 20 21 22 mp2b ran R x ran ran R
24 19 23 sstri Base R x ran ran R
25 24 rgenw x I Base R x ran ran R
26 iunss x I Base R x ran ran R x I Base R x ran ran R
27 25 26 mpbir x I Base R x ran ran R
28 rnexg R W ran R V
29 uniexg ran R V ran R V
30 3 28 29 3syl φ ran R V
31 rnexg ran R V ran ran R V
32 uniexg ran ran R V ran ran R V
33 30 31 32 3syl φ ran ran R V
34 ssexg x I Base R x ran ran R ran ran R V x I Base R x V
35 27 33 34 sylancr φ x I Base R x V
36 ixpssmap2g x I Base R x V x I Base R x x I Base R x I
37 ovex x I Base R x I V
38 37 ssex x I Base R x x I Base R x I x I Base R x V
39 35 36 38 3syl φ x I Base R x V
40 snsstp1 Base ndx x I Base R x Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x
41 ssun1 Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x Scalar ndx S ndx f Base S , g x I Base R x x I f R x g x 𝑖 ndx f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x
42 40 41 sstri Base ndx x I Base R x Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x Scalar ndx S ndx f Base S , g x I Base R x x I f R x g x 𝑖 ndx f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x
43 ssun1 Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x Scalar ndx S ndx f Base S , g x I Base R x x I f R x g x 𝑖 ndx f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x Scalar ndx S ndx f Base S , g x I Base R x x I f R x g x 𝑖 ndx f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g x I Base R x x I f x R x g x dist ndx f x I Base R x , g x I Base R x sup ran x I f x dist R x g x 0 * < Hom ndx f x I Base R x , g x I Base R x x I f x Hom R x g x comp ndx a x I Base R x × x I Base R x , c x I Base R x d c f x I Base R x , g x I Base R x x I f x Hom R x g x 2 nd a , e f x I Base R x , g x I Base R x x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
44 42 43 sstri Base ndx x I Base R x Base ndx x I Base R x + ndx f x I Base R x , g x I Base R x x I f x + R x g x ndx f x I Base R x , g x I Base R x x I f x R x g x Scalar ndx S ndx f Base S , g x I Base R x x I f R x g x 𝑖 ndx f x I Base R x , g x I Base R x S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g x I Base R x x I f x R x g x dist ndx f x I Base R x , g x I Base R x sup ran x I f x dist R x g x 0 * < Hom ndx f x I Base R x , g x I Base R x x I f x Hom R x g x comp ndx a x I Base R x × x I Base R x , c x I Base R x d c f x I Base R x , g x I Base R x x I f x Hom R x g x 2 nd a , e f x I Base R x , g x I Base R x x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
45 17 4 18 39 44 prdsvallem φ B = x I Base R x