Metamath Proof Explorer


Theorem prdsbas2

Description: The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y = S 𝑠 R
prdsbasmpt.b B = Base Y
prdsbasmpt.s φ S V
prdsbasmpt.i φ I W
prdsbasmpt.r φ R Fn I
Assertion prdsbas2 φ B = x I Base R x

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y = S 𝑠 R
2 prdsbasmpt.b B = Base Y
3 prdsbasmpt.s φ S V
4 prdsbasmpt.i φ I W
5 prdsbasmpt.r φ R Fn I
6 fnex R Fn I I W R V
7 5 4 6 syl2anc φ R V
8 5 fndmd φ dom R = I
9 1 3 7 2 8 prdsbas φ B = x I Base R x