Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
prdsbas2
Metamath Proof Explorer
Description: The base set of a structure product is an indexed set product.
(Contributed by Stefan O'Rear , 10-Jan-2015) (Revised by Mario
Carneiro , 15-Aug-2015)
Ref
Expression
Hypotheses
prdsbasmpt.y
⊢ Y = S ⨉ 𝑠 R
prdsbasmpt.b
⊢ B = Base Y
prdsbasmpt.s
⊢ φ → S ∈ V
prdsbasmpt.i
⊢ φ → I ∈ W
prdsbasmpt.r
⊢ φ → R Fn I
Assertion
prdsbas2
⊢ φ → B = ⨉ x ∈ I Base R ⁡ x
Proof
Step
Hyp
Ref
Expression
1
prdsbasmpt.y
⊢ Y = S ⨉ 𝑠 R
2
prdsbasmpt.b
⊢ B = Base Y
3
prdsbasmpt.s
⊢ φ → S ∈ V
4
prdsbasmpt.i
⊢ φ → I ∈ W
5
prdsbasmpt.r
⊢ φ → R Fn I
6
fnex
⊢ R Fn I ∧ I ∈ W → R ∈ V
7
5 4 6
syl2anc
⊢ φ → R ∈ V
8
5
fndmd
⊢ φ → dom ⁡ R = I
9
1 3 7 2 8
prdsbas
⊢ φ → B = ⨉ x ∈ I Base R ⁡ x