Metamath Proof Explorer


Theorem prdsbas3

Description: The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses prdsbasmpt2.y Y = S 𝑠 x I R
prdsbasmpt2.b B = Base Y
prdsbasmpt2.s φ S V
prdsbasmpt2.i φ I W
prdsbasmpt2.r φ x I R X
prdsbasmpt2.k K = Base R
Assertion prdsbas3 φ B = x I K

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y Y = S 𝑠 x I R
2 prdsbasmpt2.b B = Base Y
3 prdsbasmpt2.s φ S V
4 prdsbasmpt2.i φ I W
5 prdsbasmpt2.r φ x I R X
6 prdsbasmpt2.k K = Base R
7 eqid x I R = x I R
8 7 fnmpt x I R X x I R Fn I
9 5 8 syl φ x I R Fn I
10 1 2 3 4 9 prdsbas2 φ B = y I Base x I R y
11 nfcv _ x Base
12 nffvmpt1 _ x x I R y
13 11 12 nffv _ x Base x I R y
14 nfcv _ y Base x I R x
15 2fveq3 y = x Base x I R y = Base x I R x
16 13 14 15 cbvixp y I Base x I R y = x I Base x I R x
17 10 16 eqtrdi φ B = x I Base x I R x
18 7 fvmpt2 x I R X x I R x = R
19 18 fveq2d x I R X Base x I R x = Base R
20 19 6 eqtr4di x I R X Base x I R x = K
21 20 ralimiaa x I R X x I Base x I R x = K
22 ixpeq2 x I Base x I R x = K x I Base x I R x = x I K
23 5 21 22 3syl φ x I Base x I R x = x I K
24 17 23 eqtrd φ B = x I K