Metamath Proof Explorer


Theorem prdsbascl

Description: An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt2.y Y = S 𝑠 x I R
prdsbasmpt2.b B = Base Y
prdsbasmpt2.s φ S V
prdsbasmpt2.i φ I W
prdsbasmpt2.r φ x I R X
prdsbasmpt2.k K = Base R
prdsbascl.f φ F B
Assertion prdsbascl φ x I F x K

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y Y = S 𝑠 x I R
2 prdsbasmpt2.b B = Base Y
3 prdsbasmpt2.s φ S V
4 prdsbasmpt2.i φ I W
5 prdsbasmpt2.r φ x I R X
6 prdsbasmpt2.k K = Base R
7 prdsbascl.f φ F B
8 eqid x I R = x I R
9 8 fnmpt x I R X x I R Fn I
10 5 9 syl φ x I R Fn I
11 1 2 3 4 10 7 prdsbasfn φ F Fn I
12 dffn5 F Fn I F = x I F x
13 11 12 sylib φ F = x I F x
14 13 7 eqeltrrd φ x I F x B
15 1 2 3 4 5 6 prdsbasmpt2 φ x I F x B x I F x K
16 14 15 mpbid φ x I F x K