Metamath Proof Explorer


Theorem prdsbasex

Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015)

Ref Expression
Hypothesis prdsbasex.b B = x dom R Base R x
Assertion prdsbasex B V

Proof

Step Hyp Ref Expression
1 prdsbasex.b B = x dom R Base R x
2 ixpexg x dom R Base R x V x dom R Base R x V
3 fvexd x dom R Base R x V
4 2 3 mprg x dom R Base R x V
5 1 4 eqeltri B V