Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
prdsbasex
Next ⟩
imasvalstr
Metamath Proof Explorer
Ascii
Unicode
Theorem
prdsbasex
Description:
Lemma for structure products.
(Contributed by
Mario Carneiro
, 3-Jan-2015)
Ref
Expression
Hypothesis
prdsbasex.b
⊢
B
=
⨉
x
∈
dom
⁡
R
Base
R
⁡
x
Assertion
prdsbasex
⊢
B
∈
V
Proof
Step
Hyp
Ref
Expression
1
prdsbasex.b
⊢
B
=
⨉
x
∈
dom
⁡
R
Base
R
⁡
x
2
ixpexg
⊢
∀
x
∈
dom
⁡
R
Base
R
⁡
x
∈
V
→
⨉
x
∈
dom
⁡
R
Base
R
⁡
x
∈
V
3
fvexd
⊢
x
∈
dom
⁡
R
→
Base
R
⁡
x
∈
V
4
2
3
mprg
⊢
⨉
x
∈
dom
⁡
R
Base
R
⁡
x
∈
V
5
1
4
eqeltri
⊢
B
∈
V