Metamath Proof Explorer
		
		
		
		Description:  Points in the structure product are functions; use this with dffn5 to establish equalities.  (Contributed by Stefan O'Rear, 10-Jan-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | prdsbasmpt.y |  | 
					
						|  |  | prdsbasmpt.b |  | 
					
						|  |  | prdsbasmpt.s |  | 
					
						|  |  | prdsbasmpt.i |  | 
					
						|  |  | prdsbasmpt.r |  | 
					
						|  |  | prdsbasmpt.t |  | 
				
					|  | Assertion | prdsbasfn |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y |  | 
						
							| 2 |  | prdsbasmpt.b |  | 
						
							| 3 |  | prdsbasmpt.s |  | 
						
							| 4 |  | prdsbasmpt.i |  | 
						
							| 5 |  | prdsbasmpt.r |  | 
						
							| 6 |  | prdsbasmpt.t |  | 
						
							| 7 | 1 2 3 4 5 | prdsbas2 |  | 
						
							| 8 | 6 7 | eleqtrd |  | 
						
							| 9 |  | ixpfn |  | 
						
							| 10 | 8 9 | syl |  |