Metamath Proof Explorer
Description: Points in the structure product are functions; use this with dffn5 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
prdsbasmpt.y |
|
|
|
prdsbasmpt.b |
|
|
|
prdsbasmpt.s |
|
|
|
prdsbasmpt.i |
|
|
|
prdsbasmpt.r |
|
|
|
prdsbasmpt.t |
|
|
Assertion |
prdsbasfn |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbasmpt.y |
|
2 |
|
prdsbasmpt.b |
|
3 |
|
prdsbasmpt.s |
|
4 |
|
prdsbasmpt.i |
|
5 |
|
prdsbasmpt.r |
|
6 |
|
prdsbasmpt.t |
|
7 |
1 2 3 4 5
|
prdsbas2 |
|
8 |
6 7
|
eleqtrd |
|
9 |
|
ixpfn |
|
10 |
8 9
|
syl |
|