Metamath Proof Explorer


Theorem prdsbasfn

Description: Points in the structure product are functions; use this with dffn5 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y = S 𝑠 R
prdsbasmpt.b B = Base Y
prdsbasmpt.s φ S V
prdsbasmpt.i φ I W
prdsbasmpt.r φ R Fn I
prdsbasmpt.t φ T B
Assertion prdsbasfn φ T Fn I

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y = S 𝑠 R
2 prdsbasmpt.b B = Base Y
3 prdsbasmpt.s φ S V
4 prdsbasmpt.i φ I W
5 prdsbasmpt.r φ R Fn I
6 prdsbasmpt.t φ T B
7 1 2 3 4 5 prdsbas2 φ B = x I Base R x
8 6 7 eleqtrd φ T x I Base R x
9 ixpfn T x I Base R x T Fn I
10 8 9 syl φ T Fn I