Metamath Proof Explorer


Theorem prdsbaslem

Description: Lemma for prdsbas and similar theorems. (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses prdsbaslem.u φ U = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙
prdsbaslem.1 A = E U
prdsbaslem.2 E = Slot E ndx
prdsbaslem.3 φ T V
prdsbaslem.4 E ndx T Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙
Assertion prdsbaslem φ A = T

Proof

Step Hyp Ref Expression
1 prdsbaslem.u φ U = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙
2 prdsbaslem.1 A = E U
3 prdsbaslem.2 E = Slot E ndx
4 prdsbaslem.3 φ T V
5 prdsbaslem.4 E ndx T Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙
6 prdsvalstr Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙ Struct 1 15
7 1 6 3 5 4 2 strfv3 φ A = T