Metamath Proof Explorer


Theorem prdsbasmpt

Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y = S 𝑠 R
prdsbasmpt.b B = Base Y
prdsbasmpt.s φ S V
prdsbasmpt.i φ I W
prdsbasmpt.r φ R Fn I
Assertion prdsbasmpt φ x I U B x I U Base R x

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y = S 𝑠 R
2 prdsbasmpt.b B = Base Y
3 prdsbasmpt.s φ S V
4 prdsbasmpt.i φ I W
5 prdsbasmpt.r φ R Fn I
6 1 2 3 4 5 prdsbas2 φ B = x I Base R x
7 6 eleq2d φ x I U B x I U x I Base R x
8 mptelixpg I W x I U x I Base R x x I U Base R x
9 4 8 syl φ x I U x I Base R x x I U Base R x
10 7 9 bitrd φ x I U B x I U Base R x