Metamath Proof Explorer


Theorem prdsbasprj

Description: Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y = S 𝑠 R
prdsbasmpt.b B = Base Y
prdsbasmpt.s φ S V
prdsbasmpt.i φ I W
prdsbasmpt.r φ R Fn I
prdsbasmpt.t φ T B
prdsbasprj.j φ J I
Assertion prdsbasprj φ T J Base R J

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y = S 𝑠 R
2 prdsbasmpt.b B = Base Y
3 prdsbasmpt.s φ S V
4 prdsbasmpt.i φ I W
5 prdsbasmpt.r φ R Fn I
6 prdsbasmpt.t φ T B
7 prdsbasprj.j φ J I
8 fveq2 x = J T x = T J
9 2fveq3 x = J Base R x = Base R J
10 8 9 eleq12d x = J T x Base R x T J Base R J
11 1 2 3 4 5 prdsbas2 φ B = x I Base R x
12 6 11 eleqtrd φ T x I Base R x
13 elixp2 T x I Base R x T V T Fn I x I T x Base R x
14 13 simp3bi T x I Base R x x I T x Base R x
15 12 14 syl φ x I T x Base R x
16 10 15 7 rspcdva φ T J Base R J