Metamath Proof Explorer


Theorem prdscrngd

Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses prdscrngd.y Y = S 𝑠 R
prdscrngd.i φ I W
prdscrngd.s φ S V
prdscrngd.r φ R : I CRing
Assertion prdscrngd φ Y CRing

Proof

Step Hyp Ref Expression
1 prdscrngd.y Y = S 𝑠 R
2 prdscrngd.i φ I W
3 prdscrngd.s φ S V
4 prdscrngd.r φ R : I CRing
5 crngring x CRing x Ring
6 5 ssriv CRing Ring
7 fss R : I CRing CRing Ring R : I Ring
8 4 6 7 sylancl φ R : I Ring
9 1 2 3 8 prdsringd φ Y Ring
10 eqid S 𝑠 mulGrp R = S 𝑠 mulGrp R
11 fnmgp mulGrp Fn V
12 ssv CRing V
13 fnssres mulGrp Fn V CRing V mulGrp CRing Fn CRing
14 11 12 13 mp2an mulGrp CRing Fn CRing
15 fvres x CRing mulGrp CRing x = mulGrp x
16 eqid mulGrp x = mulGrp x
17 16 crngmgp x CRing mulGrp x CMnd
18 15 17 eqeltrd x CRing mulGrp CRing x CMnd
19 18 rgen x CRing mulGrp CRing x CMnd
20 ffnfv mulGrp CRing : CRing CMnd mulGrp CRing Fn CRing x CRing mulGrp CRing x CMnd
21 14 19 20 mpbir2an mulGrp CRing : CRing CMnd
22 fco2 mulGrp CRing : CRing CMnd R : I CRing mulGrp R : I CMnd
23 21 4 22 sylancr φ mulGrp R : I CMnd
24 10 2 3 23 prdscmnd φ S 𝑠 mulGrp R CMnd
25 eqidd φ Base mulGrp Y = Base mulGrp Y
26 eqid mulGrp Y = mulGrp Y
27 4 ffnd φ R Fn I
28 1 26 10 2 3 27 prdsmgp φ Base mulGrp Y = Base S 𝑠 mulGrp R + mulGrp Y = + S 𝑠 mulGrp R
29 28 simpld φ Base mulGrp Y = Base S 𝑠 mulGrp R
30 28 simprd φ + mulGrp Y = + S 𝑠 mulGrp R
31 30 oveqdr φ x Base mulGrp Y y Base mulGrp Y x + mulGrp Y y = x + S 𝑠 mulGrp R y
32 25 29 31 cmnpropd φ mulGrp Y CMnd S 𝑠 mulGrp R CMnd
33 24 32 mpbird φ mulGrp Y CMnd
34 26 iscrng Y CRing Y Ring mulGrp Y CMnd
35 9 33 34 sylanbrc φ Y CRing