Step |
Hyp |
Ref |
Expression |
1 |
|
prdsgsum.y |
|
2 |
|
prdsgsum.b |
|
3 |
|
prdsgsum.z |
|
4 |
|
prdsgsum.i |
|
5 |
|
prdsgsum.j |
|
6 |
|
prdsgsum.s |
|
7 |
|
prdsgsum.r |
|
8 |
|
prdsgsum.f |
|
9 |
|
prdsgsum.w |
|
10 |
|
eqid |
|
11 |
7
|
fmpttd |
|
12 |
11
|
ffnd |
|
13 |
1 4 6 11
|
prdscmnd |
|
14 |
8
|
anassrs |
|
15 |
14
|
an32s |
|
16 |
15
|
ralrimiva |
|
17 |
7
|
ralrimiva |
|
18 |
1 10 6 4 17 2
|
prdsbasmpt2 |
|
19 |
18
|
adantr |
|
20 |
16 19
|
mpbird |
|
21 |
20
|
fmpttd |
|
22 |
10 3 13 5 21 9
|
gsumcl |
|
23 |
1 10 6 4 12 22
|
prdsbasfn |
|
24 |
|
nfcv |
|
25 |
|
nfcv |
|
26 |
|
nfcv |
|
27 |
|
nfmpt1 |
|
28 |
26 27
|
nfmpt |
|
29 |
24 25 28
|
nfov |
|
30 |
29
|
dffn5f |
|
31 |
23 30
|
sylib |
|
32 |
|
simpr |
|
33 |
|
eqid |
|
34 |
33
|
fvmpt2 |
|
35 |
32 14 34
|
syl2an2r |
|
36 |
35
|
mpteq2dva |
|
37 |
36
|
oveq2d |
|
38 |
13
|
adantr |
|
39 |
|
cmnmnd |
|
40 |
7 39
|
syl |
|
41 |
5
|
adantr |
|
42 |
4
|
adantr |
|
43 |
6
|
adantr |
|
44 |
40
|
fmpttd |
|
45 |
44
|
adantr |
|
46 |
1 10 42 43 45 32
|
prdspjmhm |
|
47 |
|
eqid |
|
48 |
47
|
fvmpt2 |
|
49 |
32 7 48
|
syl2anc |
|
50 |
49
|
oveq2d |
|
51 |
46 50
|
eleqtrd |
|
52 |
20
|
adantlr |
|
53 |
9
|
adantr |
|
54 |
|
fveq1 |
|
55 |
|
fveq1 |
|
56 |
10 3 38 40 41 51 52 53 54 55
|
gsummhm2 |
|
57 |
37 56
|
eqtr3d |
|
58 |
57
|
mpteq2dva |
|
59 |
31 58
|
eqtr4d |
|