Metamath Proof Explorer


Theorem prdshom

Description: Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdshom.h H = Hom P
Assertion prdshom φ H = f B , g B x I f x Hom R x g x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdshom.h H = Hom P
7 eqid Base S = Base S
8 1 2 3 4 5 prdsbas φ B = x I Base R x
9 eqid + P = + P
10 1 2 3 4 5 9 prdsplusg φ + P = f B , g B x I f x + R x g x
11 eqid P = P
12 1 2 3 4 5 11 prdsmulr φ P = f B , g B x I f x R x g x
13 eqid P = P
14 1 2 3 4 5 7 13 prdsvsca φ P = f Base S , g B x I f R x g x
15 eqidd φ f B , g B S x I f x 𝑖 R x g x = f B , g B S x I f x 𝑖 R x g x
16 eqid TopSet P = TopSet P
17 1 2 3 4 5 16 prdstset φ TopSet P = 𝑡 TopOpen R
18 eqid P = P
19 1 2 3 4 5 18 prdsle φ P = f g | f g B x I f x R x g x
20 eqid dist P = dist P
21 1 2 3 4 5 20 prdsds φ dist P = f B , g B sup ran x I f x dist R x g x 0 * <
22 eqidd φ f B , g B x I f x Hom R x g x = f B , g B x I f x Hom R x g x
23 eqidd φ a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x = a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
24 1 7 5 8 10 12 14 15 17 19 21 22 23 2 3 prdsval φ P = Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
25 homid Hom = Slot Hom ndx
26 ovssunirn f x Hom R x g x ran Hom R x
27 25 strfvss Hom R x ran R x
28 fvssunirn R x ran R
29 rnss R x ran R ran R x ran ran R
30 uniss ran R x ran ran R ran R x ran ran R
31 28 29 30 mp2b ran R x ran ran R
32 27 31 sstri Hom R x ran ran R
33 rnss Hom R x ran ran R ran Hom R x ran ran ran R
34 uniss ran Hom R x ran ran ran R ran Hom R x ran ran ran R
35 32 33 34 mp2b ran Hom R x ran ran ran R
36 26 35 sstri f x Hom R x g x ran ran ran R
37 36 rgenw x I f x Hom R x g x ran ran ran R
38 ss2ixp x I f x Hom R x g x ran ran ran R x I f x Hom R x g x x I ran ran ran R
39 37 38 ax-mp x I f x Hom R x g x x I ran ran ran R
40 3 dmexd φ dom R V
41 5 40 eqeltrrd φ I V
42 rnexg R W ran R V
43 uniexg ran R V ran R V
44 3 42 43 3syl φ ran R V
45 rnexg ran R V ran ran R V
46 uniexg ran ran R V ran ran R V
47 44 45 46 3syl φ ran ran R V
48 rnexg ran ran R V ran ran ran R V
49 uniexg ran ran ran R V ran ran ran R V
50 47 48 49 3syl φ ran ran ran R V
51 ixpconstg I V ran ran ran R V x I ran ran ran R = ran ran ran R I
52 41 50 51 syl2anc φ x I ran ran ran R = ran ran ran R I
53 39 52 sseqtrid φ x I f x Hom R x g x ran ran ran R I
54 ovex ran ran ran R I V
55 54 elpw2 x I f x Hom R x g x 𝒫 ran ran ran R I x I f x Hom R x g x ran ran ran R I
56 53 55 sylibr φ x I f x Hom R x g x 𝒫 ran ran ran R I
57 56 ralrimivw φ g B x I f x Hom R x g x 𝒫 ran ran ran R I
58 57 ralrimivw φ f B g B x I f x Hom R x g x 𝒫 ran ran ran R I
59 eqid f B , g B x I f x Hom R x g x = f B , g B x I f x Hom R x g x
60 59 fmpo f B g B x I f x Hom R x g x 𝒫 ran ran ran R I f B , g B x I f x Hom R x g x : B × B 𝒫 ran ran ran R I
61 58 60 sylib φ f B , g B x I f x Hom R x g x : B × B 𝒫 ran ran ran R I
62 4 fvexi B V
63 62 62 xpex B × B V
64 63 a1i φ B × B V
65 54 pwex 𝒫 ran ran ran R I V
66 65 a1i φ 𝒫 ran ran ran R I V
67 fex2 f B , g B x I f x Hom R x g x : B × B 𝒫 ran ran ran R I B × B V 𝒫 ran ran ran R I V f B , g B x I f x Hom R x g x V
68 61 64 66 67 syl3anc φ f B , g B x I f x Hom R x g x V
69 snsspr1 Hom ndx f B , g B x I f x Hom R x g x Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
70 ssun2 Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
71 69 70 sstri Hom ndx f B , g B x I f x Hom R x g x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
72 ssun2 TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
73 71 72 sstri Hom ndx f B , g B x I f x Hom R x g x Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
74 24 6 25 68 73 prdsbaslem φ H = f B , g B x I f x Hom R x g x