Step |
Hyp |
Ref |
Expression |
1 |
|
prdsplusgcl.y |
|
2 |
|
prdsplusgcl.b |
|
3 |
|
prdsplusgcl.p |
|
4 |
|
prdsplusgcl.s |
|
5 |
|
prdsplusgcl.i |
|
6 |
|
prdsplusgcl.r |
|
7 |
|
prdsidlem.z |
|
8 |
|
fvexd |
|
9 |
6
|
feqmptd |
|
10 |
|
fn0g |
|
11 |
10
|
a1i |
|
12 |
|
dffn5 |
|
13 |
11 12
|
sylib |
|
14 |
|
fveq2 |
|
15 |
8 9 13 14
|
fmptco |
|
16 |
7 15
|
eqtrid |
|
17 |
6
|
ffvelrnda |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
18 19
|
mndidcl |
|
21 |
17 20
|
syl |
|
22 |
21
|
ralrimiva |
|
23 |
6
|
ffnd |
|
24 |
1 2 4 5 23
|
prdsbasmpt |
|
25 |
22 24
|
mpbird |
|
26 |
16 25
|
eqeltrd |
|
27 |
7
|
fveq1i |
|
28 |
|
fvco2 |
|
29 |
23 28
|
sylan |
|
30 |
27 29
|
eqtrid |
|
31 |
30
|
adantlr |
|
32 |
31
|
oveq1d |
|
33 |
6
|
adantr |
|
34 |
33
|
ffvelrnda |
|
35 |
4
|
ad2antrr |
|
36 |
5
|
ad2antrr |
|
37 |
23
|
ad2antrr |
|
38 |
|
simplr |
|
39 |
|
simpr |
|
40 |
1 2 35 36 37 38 39
|
prdsbasprj |
|
41 |
|
eqid |
|
42 |
18 41 19
|
mndlid |
|
43 |
34 40 42
|
syl2anc |
|
44 |
32 43
|
eqtrd |
|
45 |
44
|
mpteq2dva |
|
46 |
4
|
adantr |
|
47 |
5
|
adantr |
|
48 |
23
|
adantr |
|
49 |
26
|
adantr |
|
50 |
|
simpr |
|
51 |
1 2 46 47 48 49 50 3
|
prdsplusgval |
|
52 |
1 2 46 47 48 50
|
prdsbasfn |
|
53 |
|
dffn5 |
|
54 |
52 53
|
sylib |
|
55 |
45 51 54
|
3eqtr4d |
|
56 |
31
|
oveq2d |
|
57 |
18 41 19
|
mndrid |
|
58 |
34 40 57
|
syl2anc |
|
59 |
56 58
|
eqtrd |
|
60 |
59
|
mpteq2dva |
|
61 |
1 2 46 47 48 50 49 3
|
prdsplusgval |
|
62 |
60 61 54
|
3eqtr4d |
|
63 |
55 62
|
jca |
|
64 |
63
|
ralrimiva |
|
65 |
26 64
|
jca |
|