| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsplusgcl.y |
|
| 2 |
|
prdsplusgcl.b |
|
| 3 |
|
prdsplusgcl.p |
|
| 4 |
|
prdsplusgcl.s |
|
| 5 |
|
prdsplusgcl.i |
|
| 6 |
|
prdsplusgcl.r |
|
| 7 |
|
prdsidlem.z |
|
| 8 |
|
fvexd |
|
| 9 |
6
|
feqmptd |
|
| 10 |
|
fn0g |
|
| 11 |
10
|
a1i |
|
| 12 |
|
dffn5 |
|
| 13 |
11 12
|
sylib |
|
| 14 |
|
fveq2 |
|
| 15 |
8 9 13 14
|
fmptco |
|
| 16 |
7 15
|
eqtrid |
|
| 17 |
6
|
ffvelcdmda |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
18 19
|
mndidcl |
|
| 21 |
17 20
|
syl |
|
| 22 |
21
|
ralrimiva |
|
| 23 |
6
|
ffnd |
|
| 24 |
1 2 4 5 23
|
prdsbasmpt |
|
| 25 |
22 24
|
mpbird |
|
| 26 |
16 25
|
eqeltrd |
|
| 27 |
7
|
fveq1i |
|
| 28 |
|
fvco2 |
|
| 29 |
23 28
|
sylan |
|
| 30 |
27 29
|
eqtrid |
|
| 31 |
30
|
adantlr |
|
| 32 |
31
|
oveq1d |
|
| 33 |
6
|
adantr |
|
| 34 |
33
|
ffvelcdmda |
|
| 35 |
4
|
ad2antrr |
|
| 36 |
5
|
ad2antrr |
|
| 37 |
23
|
ad2antrr |
|
| 38 |
|
simplr |
|
| 39 |
|
simpr |
|
| 40 |
1 2 35 36 37 38 39
|
prdsbasprj |
|
| 41 |
|
eqid |
|
| 42 |
18 41 19
|
mndlid |
|
| 43 |
34 40 42
|
syl2anc |
|
| 44 |
32 43
|
eqtrd |
|
| 45 |
44
|
mpteq2dva |
|
| 46 |
4
|
adantr |
|
| 47 |
5
|
adantr |
|
| 48 |
23
|
adantr |
|
| 49 |
26
|
adantr |
|
| 50 |
|
simpr |
|
| 51 |
1 2 46 47 48 49 50 3
|
prdsplusgval |
|
| 52 |
1 2 46 47 48 50
|
prdsbasfn |
|
| 53 |
|
dffn5 |
|
| 54 |
52 53
|
sylib |
|
| 55 |
45 51 54
|
3eqtr4d |
|
| 56 |
31
|
oveq2d |
|
| 57 |
18 41 19
|
mndrid |
|
| 58 |
34 40 57
|
syl2anc |
|
| 59 |
56 58
|
eqtrd |
|
| 60 |
59
|
mpteq2dva |
|
| 61 |
1 2 46 47 48 50 49 3
|
prdsplusgval |
|
| 62 |
60 61 54
|
3eqtr4d |
|
| 63 |
55 62
|
jca |
|
| 64 |
63
|
ralrimiva |
|
| 65 |
26 64
|
jca |
|