Metamath Proof Explorer


Theorem prdsinvgd2

Description: Negation of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses prdsinvgd2.y Y = S 𝑠 R
prdsinvgd2.i φ I W
prdsinvgd2.s φ S V
prdsinvgd2.r φ R : I Grp
prdsinvgd2.b B = Base Y
prdsinvgd2.n N = inv g Y
prdsinvgd2.x φ X B
prdsinvgd2.j φ J I
Assertion prdsinvgd2 φ N X J = inv g R J X J

Proof

Step Hyp Ref Expression
1 prdsinvgd2.y Y = S 𝑠 R
2 prdsinvgd2.i φ I W
3 prdsinvgd2.s φ S V
4 prdsinvgd2.r φ R : I Grp
5 prdsinvgd2.b B = Base Y
6 prdsinvgd2.n N = inv g Y
7 prdsinvgd2.x φ X B
8 prdsinvgd2.j φ J I
9 1 2 3 4 5 6 7 prdsinvgd φ N X = x I inv g R x X x
10 9 fveq1d φ N X J = x I inv g R x X x J
11 2fveq3 x = J inv g R x = inv g R J
12 fveq2 x = J X x = X J
13 11 12 fveq12d x = J inv g R x X x = inv g R J X J
14 eqid x I inv g R x X x = x I inv g R x X x
15 fvex inv g R J X J V
16 13 14 15 fvmpt J I x I inv g R x X x J = inv g R J X J
17 8 16 syl φ x I inv g R x X x J = inv g R J X J
18 10 17 eqtrd φ N X J = inv g R J X J