Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsinvlem.y | |
|
| prdsinvlem.b | |
||
| prdsinvlem.p | |
||
| prdsinvlem.s | |
||
| prdsinvlem.i | |
||
| prdsinvlem.r | |
||
| prdsinvlem.f | |
||
| prdsinvlem.z | |
||
| prdsinvlem.n | |
||
| Assertion | prdsinvlem | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsinvlem.y | |
|
| 2 | prdsinvlem.b | |
|
| 3 | prdsinvlem.p | |
|
| 4 | prdsinvlem.s | |
|
| 5 | prdsinvlem.i | |
|
| 6 | prdsinvlem.r | |
|
| 7 | prdsinvlem.f | |
|
| 8 | prdsinvlem.z | |
|
| 9 | prdsinvlem.n | |
|
| 10 | 6 | ffvelcdmda | |
| 11 | 4 | adantr | |
| 12 | 5 | adantr | |
| 13 | 6 | ffnd | |
| 14 | 13 | adantr | |
| 15 | 7 | adantr | |
| 16 | simpr | |
|
| 17 | 1 2 11 12 14 15 16 | prdsbasprj | |
| 18 | eqid | |
|
| 19 | eqid | |
|
| 20 | 18 19 | grpinvcl | |
| 21 | 10 17 20 | syl2anc | |
| 22 | 21 | ralrimiva | |
| 23 | 1 2 4 5 13 | prdsbasmpt | |
| 24 | 22 23 | mpbird | |
| 25 | 9 24 | eqeltrid | |
| 26 | 6 | ffvelcdmda | |
| 27 | 4 | adantr | |
| 28 | 5 | adantr | |
| 29 | 13 | adantr | |
| 30 | 7 | adantr | |
| 31 | simpr | |
|
| 32 | 1 2 27 28 29 30 31 | prdsbasprj | |
| 33 | eqid | |
|
| 34 | eqid | |
|
| 35 | eqid | |
|
| 36 | eqid | |
|
| 37 | 33 34 35 36 | grplinv | |
| 38 | 26 32 37 | syl2anc | |
| 39 | 2fveq3 | |
|
| 40 | fveq2 | |
|
| 41 | 39 40 | fveq12d | |
| 42 | fvex | |
|
| 43 | 41 9 42 | fvmpt | |
| 44 | 43 | adantl | |
| 45 | 44 | oveq1d | |
| 46 | 8 | fveq1i | |
| 47 | fvco2 | |
|
| 48 | 13 47 | sylan | |
| 49 | 46 48 | eqtrid | |
| 50 | 38 45 49 | 3eqtr4d | |
| 51 | 50 | mpteq2dva | |
| 52 | 1 2 4 5 13 25 7 3 | prdsplusgval | |
| 53 | fn0g | |
|
| 54 | ssv | |
|
| 55 | 54 | a1i | |
| 56 | fnco | |
|
| 57 | 53 13 55 56 | mp3an2i | |
| 58 | 8 | fneq1i | |
| 59 | 57 58 | sylibr | |
| 60 | dffn5 | |
|
| 61 | 59 60 | sylib | |
| 62 | 51 52 61 | 3eqtr4d | |
| 63 | 25 62 | jca | |