Metamath Proof Explorer


Theorem prdsle

Description: Structure product weak ordering. (Contributed by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdsle.l ˙ = P
Assertion prdsle φ ˙ = f g | f g B x I f x R x g x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdsle.l ˙ = P
7 eqid Base S = Base S
8 1 2 3 4 5 prdsbas φ B = x I Base R x
9 eqid + P = + P
10 1 2 3 4 5 9 prdsplusg φ + P = f B , g B x I f x + R x g x
11 eqid P = P
12 1 2 3 4 5 11 prdsmulr φ P = f B , g B x I f x R x g x
13 eqid P = P
14 1 2 3 4 5 7 13 prdsvsca φ P = f Base S , g B x I f R x g x
15 eqidd φ f B , g B S x I f x 𝑖 R x g x = f B , g B S x I f x 𝑖 R x g x
16 eqidd φ 𝑡 TopOpen R = 𝑡 TopOpen R
17 eqidd φ f g | f g B x I f x R x g x = f g | f g B x I f x R x g x
18 eqidd φ f B , g B sup ran x I f x dist R x g x 0 * < = f B , g B sup ran x I f x dist R x g x 0 * <
19 eqidd φ f B , g B x I f x Hom R x g x = f B , g B x I f x Hom R x g x
20 eqidd φ a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x = a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
21 1 7 5 8 10 12 14 15 16 17 18 19 20 2 3 prdsval φ P = Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
22 pleid le = Slot ndx
23 4 fvexi B V
24 23 23 xpex B × B V
25 vex f V
26 vex g V
27 25 26 prss f B g B f g B
28 27 anbi1i f B g B x I f x R x g x f g B x I f x R x g x
29 28 opabbii f g | f B g B x I f x R x g x = f g | f g B x I f x R x g x
30 opabssxp f g | f B g B x I f x R x g x B × B
31 29 30 eqsstrri f g | f g B x I f x R x g x B × B
32 24 31 ssexi f g | f g B x I f x R x g x V
33 32 a1i φ f g | f g B x I f x R x g x V
34 snsstp2 ndx f g | f g B x I f x R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * <
35 ssun1 TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
36 34 35 sstri ndx f g | f g B x I f x R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
37 ssun2 TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
38 36 37 sstri ndx f g | f g B x I f x R x g x Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
39 21 6 22 33 38 prdsvallem φ ˙ = f g | f g B x I f x R x g x