Metamath Proof Explorer


Theorem prdsless

Description: Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdsle.l ˙ = P
Assertion prdsless φ ˙ B × B

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdsle.l ˙ = P
7 1 2 3 4 5 6 prdsle φ ˙ = f g | f g B x I f x R x g x
8 vex f V
9 vex g V
10 8 9 prss f B g B f g B
11 10 anbi1i f B g B x I f x R x g x f g B x I f x R x g x
12 11 opabbii f g | f B g B x I f x R x g x = f g | f g B x I f x R x g x
13 opabssxp f g | f B g B x I f x R x g x B × B
14 12 13 eqsstrri f g | f g B x I f x R x g x B × B
15 7 14 eqsstrdi φ ˙ B × B