Metamath Proof Explorer


Theorem prdsmet

Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses prdsmet.y Y = S 𝑠 x I R
prdsmet.b B = Base Y
prdsmet.v V = Base R
prdsmet.e E = dist R V × V
prdsmet.d D = dist Y
prdsmet.s φ S W
prdsmet.i φ I Fin
prdsmet.r φ x I R Z
prdsmet.m φ x I E Met V
Assertion prdsmet φ D Met B

Proof

Step Hyp Ref Expression
1 prdsmet.y Y = S 𝑠 x I R
2 prdsmet.b B = Base Y
3 prdsmet.v V = Base R
4 prdsmet.e E = dist R V × V
5 prdsmet.d D = dist Y
6 prdsmet.s φ S W
7 prdsmet.i φ I Fin
8 prdsmet.r φ x I R Z
9 prdsmet.m φ x I E Met V
10 metxmet E Met V E ∞Met V
11 9 10 syl φ x I E ∞Met V
12 1 2 3 4 5 6 7 8 11 prdsxmet φ D ∞Met B
13 1 2 3 4 5 6 7 8 11 prdsdsf φ D : B × B 0 +∞
14 13 ffnd φ D Fn B × B
15 6 adantr φ f B g B S W
16 7 adantr φ f B g B I Fin
17 8 ralrimiva φ x I R Z
18 17 adantr φ f B g B x I R Z
19 simprl φ f B g B f B
20 simprr φ f B g B g B
21 1 2 15 16 18 19 20 3 4 5 prdsdsval3 φ f B g B f D g = sup ran x I f x E g x 0 * <
22 1 2 15 16 18 3 19 prdsbascl φ f B g B x I f x V
23 1 2 15 16 18 3 20 prdsbascl φ f B g B x I g x V
24 r19.26 x I f x V g x V x I f x V x I g x V
25 metcl E Met V f x V g x V f x E g x
26 25 3expib E Met V f x V g x V f x E g x
27 9 26 syl φ x I f x V g x V f x E g x
28 27 ralimdva φ x I f x V g x V x I f x E g x
29 28 adantr φ f B g B x I f x V g x V x I f x E g x
30 24 29 syl5bir φ f B g B x I f x V x I g x V x I f x E g x
31 22 23 30 mp2and φ f B g B x I f x E g x
32 eqid x I f x E g x = x I f x E g x
33 32 fmpt x I f x E g x x I f x E g x : I
34 31 33 sylib φ f B g B x I f x E g x : I
35 34 frnd φ f B g B ran x I f x E g x
36 0red φ f B g B 0
37 36 snssd φ f B g B 0
38 35 37 unssd φ f B g B ran x I f x E g x 0
39 xrltso < Or *
40 39 a1i φ f B g B < Or *
41 mptfi I Fin x I f x E g x Fin
42 rnfi x I f x E g x Fin ran x I f x E g x Fin
43 16 41 42 3syl φ f B g B ran x I f x E g x Fin
44 snfi 0 Fin
45 unfi ran x I f x E g x Fin 0 Fin ran x I f x E g x 0 Fin
46 43 44 45 sylancl φ f B g B ran x I f x E g x 0 Fin
47 ssun2 0 ran x I f x E g x 0
48 c0ex 0 V
49 48 snss 0 ran x I f x E g x 0 0 ran x I f x E g x 0
50 47 49 mpbir 0 ran x I f x E g x 0
51 ne0i 0 ran x I f x E g x 0 ran x I f x E g x 0
52 50 51 mp1i φ f B g B ran x I f x E g x 0
53 ressxr *
54 38 53 sstrdi φ f B g B ran x I f x E g x 0 *
55 fisupcl < Or * ran x I f x E g x 0 Fin ran x I f x E g x 0 ran x I f x E g x 0 * sup ran x I f x E g x 0 * < ran x I f x E g x 0
56 40 46 52 54 55 syl13anc φ f B g B sup ran x I f x E g x 0 * < ran x I f x E g x 0
57 38 56 sseldd φ f B g B sup ran x I f x E g x 0 * <
58 21 57 eqeltrd φ f B g B f D g
59 58 ralrimivva φ f B g B f D g
60 ffnov D : B × B D Fn B × B f B g B f D g
61 14 59 60 sylanbrc φ D : B × B
62 ismet2 D Met B D ∞Met B D : B × B
63 12 61 62 sylanbrc φ D Met B