Metamath Proof Explorer


Theorem prdsmgp

Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses prdsmgp.y Y = S 𝑠 R
prdsmgp.m M = mulGrp Y
prdsmgp.z Z = S 𝑠 mulGrp R
prdsmgp.i φ I V
prdsmgp.s φ S W
prdsmgp.r φ R Fn I
Assertion prdsmgp φ Base M = Base Z + M = + Z

Proof

Step Hyp Ref Expression
1 prdsmgp.y Y = S 𝑠 R
2 prdsmgp.m M = mulGrp Y
3 prdsmgp.z Z = S 𝑠 mulGrp R
4 prdsmgp.i φ I V
5 prdsmgp.s φ S W
6 prdsmgp.r φ R Fn I
7 eqid mulGrp R x = mulGrp R x
8 eqid Base R x = Base R x
9 7 8 mgpbas Base R x = Base mulGrp R x
10 fvco2 R Fn I x I mulGrp R x = mulGrp R x
11 6 10 sylan φ x I mulGrp R x = mulGrp R x
12 11 eqcomd φ x I mulGrp R x = mulGrp R x
13 12 fveq2d φ x I Base mulGrp R x = Base mulGrp R x
14 9 13 syl5eq φ x I Base R x = Base mulGrp R x
15 14 ixpeq2dva φ x I Base R x = x I Base mulGrp R x
16 eqid Base Y = Base Y
17 2 16 mgpbas Base Y = Base M
18 17 eqcomi Base M = Base Y
19 1 18 5 4 6 prdsbas2 φ Base M = x I Base R x
20 eqid Base Z = Base Z
21 fnmgp mulGrp Fn V
22 ssv ran R V
23 22 a1i φ ran R V
24 fnco mulGrp Fn V R Fn I ran R V mulGrp R Fn I
25 21 6 23 24 mp3an2i φ mulGrp R Fn I
26 3 20 5 4 25 prdsbas2 φ Base Z = x I Base mulGrp R x
27 15 19 26 3eqtr4d φ Base M = Base Z
28 eqid Y = Y
29 2 28 mgpplusg Y = + M
30 eqid mulGrp R z = mulGrp R z
31 eqid R z = R z
32 30 31 mgpplusg R z = + mulGrp R z
33 fvco2 R Fn I z I mulGrp R z = mulGrp R z
34 6 33 sylan φ z I mulGrp R z = mulGrp R z
35 34 eqcomd φ z I mulGrp R z = mulGrp R z
36 35 fveq2d φ z I + mulGrp R z = + mulGrp R z
37 32 36 syl5eq φ z I R z = + mulGrp R z
38 37 oveqd φ z I x z R z y z = x z + mulGrp R z y z
39 38 mpteq2dva φ z I x z R z y z = z I x z + mulGrp R z y z
40 27 27 39 mpoeq123dv φ x Base M , y Base M z I x z R z y z = x Base Z , y Base Z z I x z + mulGrp R z y z
41 fnex R Fn I I V R V
42 6 4 41 syl2anc φ R V
43 6 fndmd φ dom R = I
44 1 5 42 18 43 28 prdsmulr φ Y = x Base M , y Base M z I x z R z y z
45 fnex mulGrp R Fn I I V mulGrp R V
46 25 4 45 syl2anc φ mulGrp R V
47 25 fndmd φ dom mulGrp R = I
48 eqid + Z = + Z
49 3 5 46 20 47 48 prdsplusg φ + Z = x Base Z , y Base Z z I x z + mulGrp R z y z
50 40 44 49 3eqtr4d φ Y = + Z
51 29 50 syl5eqr φ + M = + Z
52 27 51 jca φ Base M = Base Z + M = + Z