Step |
Hyp |
Ref |
Expression |
1 |
|
prdsmndd.y |
|
2 |
|
prdsmndd.i |
|
3 |
|
prdsmndd.s |
|
4 |
|
prdsmndd.r |
|
5 |
|
eqidd |
|
6 |
|
eqidd |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
3
|
elexd |
|
10 |
9
|
adantr |
|
11 |
2
|
elexd |
|
12 |
11
|
adantr |
|
13 |
4
|
adantr |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
1 7 8 10 12 13 14 15
|
prdsplusgcl |
|
17 |
16
|
3impb |
|
18 |
4
|
ffvelrnda |
|
19 |
18
|
adantlr |
|
20 |
9
|
ad2antrr |
|
21 |
11
|
ad2antrr |
|
22 |
4
|
ffnd |
|
23 |
22
|
ad2antrr |
|
24 |
|
simplr1 |
|
25 |
|
simpr |
|
26 |
1 7 20 21 23 24 25
|
prdsbasprj |
|
27 |
|
simplr2 |
|
28 |
1 7 20 21 23 27 25
|
prdsbasprj |
|
29 |
|
simplr3 |
|
30 |
1 7 20 21 23 29 25
|
prdsbasprj |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
31 32
|
mndass |
|
34 |
19 26 28 30 33
|
syl13anc |
|
35 |
1 7 20 21 23 24 27 8 25
|
prdsplusgfval |
|
36 |
35
|
oveq1d |
|
37 |
1 7 20 21 23 27 29 8 25
|
prdsplusgfval |
|
38 |
37
|
oveq2d |
|
39 |
34 36 38
|
3eqtr4d |
|
40 |
39
|
mpteq2dva |
|
41 |
9
|
adantr |
|
42 |
11
|
adantr |
|
43 |
22
|
adantr |
|
44 |
16
|
3adantr3 |
|
45 |
|
simpr3 |
|
46 |
1 7 41 42 43 44 45 8
|
prdsplusgval |
|
47 |
|
simpr1 |
|
48 |
4
|
adantr |
|
49 |
|
simpr2 |
|
50 |
1 7 8 41 42 48 49 45
|
prdsplusgcl |
|
51 |
1 7 41 42 43 47 50 8
|
prdsplusgval |
|
52 |
40 46 51
|
3eqtr4d |
|
53 |
|
eqid |
|
54 |
1 7 8 9 11 4 53
|
prdsidlem |
|
55 |
54
|
simpld |
|
56 |
54
|
simprd |
|
57 |
56
|
r19.21bi |
|
58 |
57
|
simpld |
|
59 |
57
|
simprd |
|
60 |
5 6 17 52 55 58 59
|
ismndd |
|