Metamath Proof Explorer


Theorem prdsmulr

Description: Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P=S𝑠R
prdsbas.s φSV
prdsbas.r φRW
prdsbas.b B=BaseP
prdsbas.i φdomR=I
prdsmulr.t ·˙=P
Assertion prdsmulr φ·˙=fB,gBxIfxRxgx

Proof

Step Hyp Ref Expression
1 prdsbas.p P=S𝑠R
2 prdsbas.s φSV
3 prdsbas.r φRW
4 prdsbas.b B=BaseP
5 prdsbas.i φdomR=I
6 prdsmulr.t ·˙=P
7 eqid BaseS=BaseS
8 1 2 3 4 5 prdsbas φB=xIBaseRx
9 eqid +P=+P
10 1 2 3 4 5 9 prdsplusg φ+P=fB,gBxIfx+Rxgx
11 eqidd φfB,gBxIfxRxgx=fB,gBxIfxRxgx
12 eqidd φfBaseS,gBxIfRxgx=fBaseS,gBxIfRxgx
13 eqidd φfB,gBSxIfx𝑖Rxgx=fB,gBSxIfx𝑖Rxgx
14 eqidd φ𝑡TopOpenR=𝑡TopOpenR
15 eqidd φfg|fgBxIfxRxgx=fg|fgBxIfxRxgx
16 eqidd φfB,gBsupranxIfxdistRxgx0*<=fB,gBsupranxIfxdistRxgx0*<
17 eqidd φfB,gBxIfxHomRxgx=fB,gBxIfxHomRxgx
18 eqidd φaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex=aB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
19 1 7 5 8 10 11 12 13 14 15 16 17 18 2 3 prdsval φP=BasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
20 mulrid 𝑟=Slotndx
21 ovssunirn fxRxgxranRx
22 20 strfvss RxranRx
23 fvssunirn RxranR
24 rnss RxranRranRxranranR
25 uniss ranRxranranRranRxranranR
26 23 24 25 mp2b ranRxranranR
27 22 26 sstri RxranranR
28 rnss RxranranRranRxranranranR
29 uniss ranRxranranranRranRxranranranR
30 27 28 29 mp2b ranRxranranranR
31 21 30 sstri fxRxgxranranranR
32 ovex fxRxgxV
33 32 elpw fxRxgx𝒫ranranranRfxRxgxranranranR
34 31 33 mpbir fxRxgx𝒫ranranranR
35 34 a1i φxIfxRxgx𝒫ranranranR
36 35 fmpttd φxIfxRxgx:I𝒫ranranranR
37 rnexg RWranRV
38 uniexg ranRVranRV
39 3 37 38 3syl φranRV
40 rnexg ranRVranranRV
41 uniexg ranranRVranranRV
42 39 40 41 3syl φranranRV
43 rnexg ranranRVranranranRV
44 uniexg ranranranRVranranranRV
45 42 43 44 3syl φranranranRV
46 45 pwexd φ𝒫ranranranRV
47 3 dmexd φdomRV
48 5 47 eqeltrrd φIV
49 46 48 elmapd φxIfxRxgx𝒫ranranranRIxIfxRxgx:I𝒫ranranranR
50 36 49 mpbird φxIfxRxgx𝒫ranranranRI
51 50 ralrimivw φgBxIfxRxgx𝒫ranranranRI
52 51 ralrimivw φfBgBxIfxRxgx𝒫ranranranRI
53 eqid fB,gBxIfxRxgx=fB,gBxIfxRxgx
54 53 fmpo fBgBxIfxRxgx𝒫ranranranRIfB,gBxIfxRxgx:B×B𝒫ranranranRI
55 52 54 sylib φfB,gBxIfxRxgx:B×B𝒫ranranranRI
56 4 fvexi BV
57 56 56 xpex B×BV
58 ovex 𝒫ranranranRIV
59 fex2 fB,gBxIfxRxgx:B×B𝒫ranranranRIB×BV𝒫ranranranRIVfB,gBxIfxRxgxV
60 57 58 59 mp3an23 fB,gBxIfxRxgx:B×B𝒫ranranranRIfB,gBxIfxRxgxV
61 55 60 syl φfB,gBxIfxRxgxV
62 snsstp3 ndxfB,gBxIfxRxgxBasendxB+ndx+PndxfB,gBxIfxRxgx
63 ssun1 BasendxB+ndx+PndxfB,gBxIfxRxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
64 62 63 sstri ndxfB,gBxIfxRxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
65 ssun1 BasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
66 64 65 sstri ndxfB,gBxIfxRxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
67 19 6 20 61 66 prdsbaslem φ·˙=fB,gBxIfxRxgx