Database
BASIC ALGEBRAIC STRUCTURES
Rings
Unital rings
prdsmulrcl
Metamath Proof Explorer
Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro , 11-Mar-2015) (Proof shortened by AV , 30-Mar-2025)
Ref
Expression
Hypotheses
prdsmulrcl.y
⊢ Y = S ⨉ 𝑠 R
prdsmulrcl.b
⊢ B = Base Y
prdsmulrcl.t
⊢ · ˙ = ⋅ Y
prdsmulrcl.s
⊢ φ → S ∈ V
prdsmulrcl.i
⊢ φ → I ∈ W
prdsmulrcl.r
⊢ φ → R : I ⟶ Ring
prdsmulrcl.f
⊢ φ → F ∈ B
prdsmulrcl.g
⊢ φ → G ∈ B
Assertion
prdsmulrcl
⊢ φ → F · ˙ G ∈ B
Proof
Step
Hyp
Ref
Expression
1
prdsmulrcl.y
⊢ Y = S ⨉ 𝑠 R
2
prdsmulrcl.b
⊢ B = Base Y
3
prdsmulrcl.t
⊢ · ˙ = ⋅ Y
4
prdsmulrcl.s
⊢ φ → S ∈ V
5
prdsmulrcl.i
⊢ φ → I ∈ W
6
prdsmulrcl.r
⊢ φ → R : I ⟶ Ring
7
prdsmulrcl.f
⊢ φ → F ∈ B
8
prdsmulrcl.g
⊢ φ → G ∈ B
9
ringssrng
⊢ Ring ⊆ Rng
10
fss
⊢ R : I ⟶ Ring ∧ Ring ⊆ Rng → R : I ⟶ Rng
11
6 9 10
sylancl
⊢ φ → R : I ⟶ Rng
12
1 2 3 4 5 11 7 8
prdsmulrngcl
⊢ φ → F · ˙ G ∈ B