Metamath Proof Explorer


Theorem prdsmulrcl

Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses prdsmulrcl.y Y=S𝑠R
prdsmulrcl.b B=BaseY
prdsmulrcl.t ·˙=Y
prdsmulrcl.s φSV
prdsmulrcl.i φIW
prdsmulrcl.r φR:IRing
prdsmulrcl.f φFB
prdsmulrcl.g φGB
Assertion prdsmulrcl φF·˙GB

Proof

Step Hyp Ref Expression
1 prdsmulrcl.y Y=S𝑠R
2 prdsmulrcl.b B=BaseY
3 prdsmulrcl.t ·˙=Y
4 prdsmulrcl.s φSV
5 prdsmulrcl.i φIW
6 prdsmulrcl.r φR:IRing
7 prdsmulrcl.f φFB
8 prdsmulrcl.g φGB
9 6 ffnd φRFnI
10 1 2 4 5 9 7 8 3 prdsmulrval φF·˙G=xIFxRxGx
11 6 ffvelcdmda φxIRxRing
12 4 adantr φxISV
13 5 adantr φxIIW
14 9 adantr φxIRFnI
15 7 adantr φxIFB
16 simpr φxIxI
17 1 2 12 13 14 15 16 prdsbasprj φxIFxBaseRx
18 8 adantr φxIGB
19 1 2 12 13 14 18 16 prdsbasprj φxIGxBaseRx
20 eqid BaseRx=BaseRx
21 eqid Rx=Rx
22 20 21 ringcl RxRingFxBaseRxGxBaseRxFxRxGxBaseRx
23 11 17 19 22 syl3anc φxIFxRxGxBaseRx
24 23 ralrimiva φxIFxRxGxBaseRx
25 1 2 4 5 9 prdsbasmpt φxIFxRxGxBxIFxRxGxBaseRx
26 24 25 mpbird φxIFxRxGxB
27 10 26 eqeltrd φF·˙GB