Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdsmulrcl.y | |
|
prdsmulrcl.b | |
||
prdsmulrcl.t | |
||
prdsmulrcl.s | |
||
prdsmulrcl.i | |
||
prdsmulrcl.r | |
||
prdsmulrcl.f | |
||
prdsmulrcl.g | |
||
Assertion | prdsmulrcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsmulrcl.y | |
|
2 | prdsmulrcl.b | |
|
3 | prdsmulrcl.t | |
|
4 | prdsmulrcl.s | |
|
5 | prdsmulrcl.i | |
|
6 | prdsmulrcl.r | |
|
7 | prdsmulrcl.f | |
|
8 | prdsmulrcl.g | |
|
9 | 6 | ffnd | |
10 | 1 2 4 5 9 7 8 3 | prdsmulrval | |
11 | 6 | ffvelcdmda | |
12 | 4 | adantr | |
13 | 5 | adantr | |
14 | 9 | adantr | |
15 | 7 | adantr | |
16 | simpr | |
|
17 | 1 2 12 13 14 15 16 | prdsbasprj | |
18 | 8 | adantr | |
19 | 1 2 12 13 14 18 16 | prdsbasprj | |
20 | eqid | |
|
21 | eqid | |
|
22 | 20 21 | ringcl | |
23 | 11 17 19 22 | syl3anc | |
24 | 23 | ralrimiva | |
25 | 1 2 4 5 9 | prdsbasmpt | |
26 | 24 25 | mpbird | |
27 | 10 26 | eqeltrd | |