Metamath Proof Explorer


Theorem prdsmulrcl

Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015) (Proof shortened by AV, 30-Mar-2025)

Ref Expression
Hypotheses prdsmulrcl.y Y = S 𝑠 R
prdsmulrcl.b B = Base Y
prdsmulrcl.t · ˙ = Y
prdsmulrcl.s φ S V
prdsmulrcl.i φ I W
prdsmulrcl.r φ R : I Ring
prdsmulrcl.f φ F B
prdsmulrcl.g φ G B
Assertion prdsmulrcl φ F · ˙ G B

Proof

Step Hyp Ref Expression
1 prdsmulrcl.y Y = S 𝑠 R
2 prdsmulrcl.b B = Base Y
3 prdsmulrcl.t · ˙ = Y
4 prdsmulrcl.s φ S V
5 prdsmulrcl.i φ I W
6 prdsmulrcl.r φ R : I Ring
7 prdsmulrcl.f φ F B
8 prdsmulrcl.g φ G B
9 ringssrng Ring Rng
10 fss R : I Ring Ring Rng R : I Rng
11 6 9 10 sylancl φ R : I Rng
12 1 2 3 4 5 11 7 8 prdsmulrngcl φ F · ˙ G B