Metamath Proof Explorer


Theorem prdsplusgcl

Description: Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsplusgcl.y Y = S 𝑠 R
prdsplusgcl.b B = Base Y
prdsplusgcl.p + ˙ = + Y
prdsplusgcl.s φ S V
prdsplusgcl.i φ I W
prdsplusgcl.r φ R : I Mnd
prdsplusgcl.f φ F B
prdsplusgcl.g φ G B
Assertion prdsplusgcl φ F + ˙ G B

Proof

Step Hyp Ref Expression
1 prdsplusgcl.y Y = S 𝑠 R
2 prdsplusgcl.b B = Base Y
3 prdsplusgcl.p + ˙ = + Y
4 prdsplusgcl.s φ S V
5 prdsplusgcl.i φ I W
6 prdsplusgcl.r φ R : I Mnd
7 prdsplusgcl.f φ F B
8 prdsplusgcl.g φ G B
9 6 ffnd φ R Fn I
10 1 2 4 5 9 7 8 3 prdsplusgval φ F + ˙ G = x I F x + R x G x
11 6 ffvelrnda φ x I R x Mnd
12 4 adantr φ x I S V
13 5 adantr φ x I I W
14 9 adantr φ x I R Fn I
15 7 adantr φ x I F B
16 simpr φ x I x I
17 1 2 12 13 14 15 16 prdsbasprj φ x I F x Base R x
18 8 adantr φ x I G B
19 1 2 12 13 14 18 16 prdsbasprj φ x I G x Base R x
20 eqid Base R x = Base R x
21 eqid + R x = + R x
22 20 21 mndcl R x Mnd F x Base R x G x Base R x F x + R x G x Base R x
23 11 17 19 22 syl3anc φ x I F x + R x G x Base R x
24 23 ralrimiva φ x I F x + R x G x Base R x
25 1 2 4 5 9 prdsbasmpt φ x I F x + R x G x B x I F x + R x G x Base R x
26 24 25 mpbird φ x I F x + R x G x B
27 10 26 eqeltrd φ F + ˙ G B