Metamath Proof Explorer


Theorem prdsplusgsgrpcl

Description: Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses prdsplusgsgrpcl.y Y = S 𝑠 R
prdsplusgsgrpcl.b B = Base Y
prdsplusgsgrpcl.p + ˙ = + Y
prdsplusgsgrpcl.s φ S V
prdsplusgsgrpcl.i φ I W
prdsplusgsgrpcl.r No typesetting found for |- ( ph -> R : I --> Smgrp ) with typecode |-
prdsplusgsgrpcl.f φ F B
prdsplusgsgrpcl.g φ G B
Assertion prdsplusgsgrpcl φ F + ˙ G B

Proof

Step Hyp Ref Expression
1 prdsplusgsgrpcl.y Y = S 𝑠 R
2 prdsplusgsgrpcl.b B = Base Y
3 prdsplusgsgrpcl.p + ˙ = + Y
4 prdsplusgsgrpcl.s φ S V
5 prdsplusgsgrpcl.i φ I W
6 prdsplusgsgrpcl.r Could not format ( ph -> R : I --> Smgrp ) : No typesetting found for |- ( ph -> R : I --> Smgrp ) with typecode |-
7 prdsplusgsgrpcl.f φ F B
8 prdsplusgsgrpcl.g φ G B
9 6 ffnd φ R Fn I
10 1 2 4 5 9 7 8 3 prdsplusgval φ F + ˙ G = x I F x + R x G x
11 6 ffvelcdmda Could not format ( ( ph /\ x e. I ) -> ( R ` x ) e. Smgrp ) : No typesetting found for |- ( ( ph /\ x e. I ) -> ( R ` x ) e. Smgrp ) with typecode |-
12 4 adantr φ x I S V
13 5 adantr φ x I I W
14 9 adantr φ x I R Fn I
15 7 adantr φ x I F B
16 simpr φ x I x I
17 1 2 12 13 14 15 16 prdsbasprj φ x I F x Base R x
18 8 adantr φ x I G B
19 1 2 12 13 14 18 16 prdsbasprj φ x I G x Base R x
20 eqid Base R x = Base R x
21 eqid + R x = + R x
22 20 21 sgrpcl Could not format ( ( ( R ` x ) e. Smgrp /\ ( F ` x ) e. ( Base ` ( R ` x ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) : No typesetting found for |- ( ( ( R ` x ) e. Smgrp /\ ( F ` x ) e. ( Base ` ( R ` x ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) with typecode |-
23 11 17 19 22 syl3anc φ x I F x + R x G x Base R x
24 23 ralrimiva φ x I F x + R x G x Base R x
25 1 2 4 5 9 prdsbasmpt φ x I F x + R x G x B x I F x + R x G x Base R x
26 24 25 mpbird φ x I F x + R x G x B
27 10 26 eqeltrd φ F + ˙ G B