Metamath Proof Explorer


Theorem prdsplusgval

Description: Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y = S 𝑠 R
prdsbasmpt.b B = Base Y
prdsbasmpt.s φ S V
prdsbasmpt.i φ I W
prdsbasmpt.r φ R Fn I
prdsplusgval.f φ F B
prdsplusgval.g φ G B
prdsplusgval.p + ˙ = + Y
Assertion prdsplusgval φ F + ˙ G = x I F x + R x G x

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y = S 𝑠 R
2 prdsbasmpt.b B = Base Y
3 prdsbasmpt.s φ S V
4 prdsbasmpt.i φ I W
5 prdsbasmpt.r φ R Fn I
6 prdsplusgval.f φ F B
7 prdsplusgval.g φ G B
8 prdsplusgval.p + ˙ = + Y
9 fnex R Fn I I W R V
10 5 4 9 syl2anc φ R V
11 5 fndmd φ dom R = I
12 1 3 10 2 11 8 prdsplusg φ + ˙ = y B , z B x I y x + R x z x
13 fveq1 y = F y x = F x
14 fveq1 z = G z x = G x
15 13 14 oveqan12d y = F z = G y x + R x z x = F x + R x G x
16 15 adantl φ y = F z = G y x + R x z x = F x + R x G x
17 16 mpteq2dv φ y = F z = G x I y x + R x z x = x I F x + R x G x
18 4 mptexd φ x I F x + R x G x V
19 12 17 6 7 18 ovmpod φ F + ˙ G = x I F x + R x G x