Step |
Hyp |
Ref |
Expression |
1 |
|
prdstgpd.y |
|
2 |
|
prdstgpd.i |
|
3 |
|
prdstgpd.s |
|
4 |
|
prdstgpd.r |
|
5 |
|
tgpgrp |
|
6 |
5
|
ssriv |
|
7 |
|
fss |
|
8 |
4 6 7
|
sylancl |
|
9 |
1 2 3 8
|
prdsgrpd |
|
10 |
|
tgptmd |
|
11 |
10
|
ssriv |
|
12 |
|
fss |
|
13 |
4 11 12
|
sylancl |
|
14 |
1 2 3 13
|
prdstmdd |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
16 17
|
tmdtopon |
|
19 |
14 18
|
syl |
|
20 |
|
topnfn |
|
21 |
4
|
ffnd |
|
22 |
|
dffn2 |
|
23 |
21 22
|
sylib |
|
24 |
|
fnfco |
|
25 |
20 23 24
|
sylancr |
|
26 |
|
fvco3 |
|
27 |
4 26
|
sylan |
|
28 |
4
|
ffvelrnda |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
29 30
|
tgptopon |
|
32 |
|
topontop |
|
33 |
28 31 32
|
3syl |
|
34 |
27 33
|
eqeltrd |
|
35 |
34
|
ralrimiva |
|
36 |
|
ffnfv |
|
37 |
25 35 36
|
sylanbrc |
|
38 |
19
|
adantr |
|
39 |
1 3 2 21 16
|
prdstopn |
|
40 |
39
|
adantr |
|
41 |
40
|
eqcomd |
|
42 |
41 38
|
eqeltrd |
|
43 |
|
toponuni |
|
44 |
|
mpteq1 |
|
45 |
42 43 44
|
3syl |
|
46 |
2
|
adantr |
|
47 |
37
|
adantr |
|
48 |
|
simpr |
|
49 |
|
eqid |
|
50 |
49 15
|
ptpjcn |
|
51 |
46 47 48 50
|
syl3anc |
|
52 |
45 51
|
eqeltrd |
|
53 |
41 27
|
oveq12d |
|
54 |
52 53
|
eleqtrd |
|
55 |
|
eqid |
|
56 |
29 55
|
tgpinv |
|
57 |
28 56
|
syl |
|
58 |
38 54 57
|
cnmpt11f |
|
59 |
27
|
oveq2d |
|
60 |
58 59
|
eleqtrrd |
|
61 |
15 19 2 37 60
|
ptcn |
|
62 |
|
eqid |
|
63 |
17 62
|
grpinvf |
|
64 |
9 63
|
syl |
|
65 |
64
|
feqmptd |
|
66 |
2
|
adantr |
|
67 |
3
|
adantr |
|
68 |
8
|
adantr |
|
69 |
|
simpr |
|
70 |
1 66 67 68 17 62 69
|
prdsinvgd |
|
71 |
70
|
mpteq2dva |
|
72 |
65 71
|
eqtrd |
|
73 |
39
|
oveq2d |
|
74 |
61 72 73
|
3eltr4d |
|
75 |
16 62
|
istgp |
|
76 |
9 14 74 75
|
syl3anbrc |
|