Step |
Hyp |
Ref |
Expression |
1 |
|
prdstopn.y |
|
2 |
|
prdstopn.s |
|
3 |
|
prdstopn.i |
|
4 |
|
prdstopn.r |
|
5 |
|
prdstopn.o |
|
6 |
|
fnex |
|
7 |
4 3 6
|
syl2anc |
|
8 |
|
eqid |
|
9 |
|
eqidd |
|
10 |
|
eqid |
|
11 |
1 2 7 8 9 10
|
prdstset |
|
12 |
|
topnfn |
|
13 |
|
dffn2 |
|
14 |
4 13
|
sylib |
|
15 |
|
fnfco |
|
16 |
12 14 15
|
sylancr |
|
17 |
|
eqid |
|
18 |
17
|
ptval |
|
19 |
3 16 18
|
syl2anc |
|
20 |
19
|
unieqd |
|
21 |
|
fvco2 |
|
22 |
4 21
|
sylan |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
23 24
|
topnval |
|
26 |
|
restsspw |
|
27 |
25 26
|
eqsstrri |
|
28 |
22 27
|
eqsstrdi |
|
29 |
28
|
sseld |
|
30 |
|
fvex |
|
31 |
30
|
elpw |
|
32 |
29 31
|
syl6ib |
|
33 |
32
|
ralimdva |
|
34 |
|
simpl2 |
|
35 |
33 34
|
impel |
|
36 |
|
ss2ixp |
|
37 |
35 36
|
syl |
|
38 |
|
simprr |
|
39 |
1 8 2 3 4
|
prdsbas2 |
|
40 |
39
|
adantr |
|
41 |
37 38 40
|
3sstr4d |
|
42 |
41
|
ex |
|
43 |
42
|
exlimdv |
|
44 |
|
velpw |
|
45 |
43 44
|
syl6ibr |
|
46 |
45
|
abssdv |
|
47 |
|
fvex |
|
48 |
47
|
pwex |
|
49 |
48
|
ssex |
|
50 |
|
unitg |
|
51 |
46 49 50
|
3syl |
|
52 |
20 51
|
eqtrd |
|
53 |
|
sspwuni |
|
54 |
46 53
|
sylib |
|
55 |
52 54
|
eqsstrd |
|
56 |
|
sspwuni |
|
57 |
55 56
|
sylibr |
|
58 |
11 57
|
eqsstrd |
|
59 |
8 10
|
topnid |
|
60 |
58 59
|
syl |
|
61 |
60 5
|
eqtr4di |
|
62 |
61 11
|
eqtr3d |
|