Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbnd.y |
|
2 |
|
prdsbnd.b |
|
3 |
|
prdsbnd.v |
|
4 |
|
prdsbnd.e |
|
5 |
|
prdsbnd.d |
|
6 |
|
prdsbnd.s |
|
7 |
|
prdsbnd.i |
|
8 |
|
prdsbnd.r |
|
9 |
|
prdstotbnd.m |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
fvexd |
|
14 |
|
totbndmet |
|
15 |
9 14
|
syl |
|
16 |
10 11 3 4 12 6 7 13 15
|
prdsmet |
|
17 |
|
dffn5 |
|
18 |
8 17
|
sylib |
|
19 |
18
|
oveq2d |
|
20 |
1 19
|
eqtrid |
|
21 |
20
|
fveq2d |
|
22 |
5 21
|
eqtrid |
|
23 |
20
|
fveq2d |
|
24 |
2 23
|
eqtrid |
|
25 |
24
|
fveq2d |
|
26 |
16 22 25
|
3eltr4d |
|
27 |
7
|
adantr |
|
28 |
|
istotbnd3 |
|
29 |
28
|
simprbi |
|
30 |
9 29
|
syl |
|
31 |
30
|
r19.21bi |
|
32 |
|
df-rex |
|
33 |
|
rexv |
|
34 |
32 33
|
bitr4i |
|
35 |
31 34
|
sylib |
|
36 |
35
|
an32s |
|
37 |
36
|
ralrimiva |
|
38 |
|
eleq1 |
|
39 |
|
iuneq1 |
|
40 |
39
|
eqeq1d |
|
41 |
38 40
|
anbi12d |
|
42 |
41
|
ac6sfi |
|
43 |
27 37 42
|
syl2anc |
|
44 |
|
elfpw |
|
45 |
44
|
simplbi |
|
46 |
45
|
adantr |
|
47 |
46
|
ralimi |
|
48 |
47
|
ad2antll |
|
49 |
|
ss2ixp |
|
50 |
48 49
|
syl |
|
51 |
|
fnfi |
|
52 |
8 7 51
|
syl2anc |
|
53 |
8
|
fndmd |
|
54 |
1 6 52 2 53
|
prdsbas |
|
55 |
3
|
rgenw |
|
56 |
|
ixpeq2 |
|
57 |
55 56
|
ax-mp |
|
58 |
54 57
|
eqtr4di |
|
59 |
58
|
ad2antrr |
|
60 |
50 59
|
sseqtrrd |
|
61 |
27
|
adantr |
|
62 |
44
|
simprbi |
|
63 |
62
|
adantr |
|
64 |
63
|
ralimi |
|
65 |
64
|
ad2antll |
|
66 |
|
ixpfi |
|
67 |
61 65 66
|
syl2anc |
|
68 |
|
elfpw |
|
69 |
60 67 68
|
sylanbrc |
|
70 |
|
metxmet |
|
71 |
26 70
|
syl |
|
72 |
|
rpxr |
|
73 |
|
blssm |
|
74 |
73
|
3expa |
|
75 |
74
|
an32s |
|
76 |
75
|
ralrimiva |
|
77 |
71 72 76
|
syl2an |
|
78 |
77
|
adantr |
|
79 |
|
ssralv |
|
80 |
60 78 79
|
sylc |
|
81 |
|
iunss |
|
82 |
80 81
|
sylibr |
|
83 |
61
|
adantr |
|
84 |
59
|
eleq2d |
|
85 |
|
vex |
|
86 |
85
|
elixp |
|
87 |
86
|
simprbi |
|
88 |
|
df-rex |
|
89 |
|
eliun |
|
90 |
|
rexv |
|
91 |
88 89 90
|
3bitr4i |
|
92 |
|
eleq2 |
|
93 |
91 92
|
bitr3id |
|
94 |
93
|
biimprd |
|
95 |
94
|
adantl |
|
96 |
95
|
ral2imi |
|
97 |
96
|
ad2antll |
|
98 |
87 97
|
syl5 |
|
99 |
84 98
|
sylbid |
|
100 |
99
|
imp |
|
101 |
|
eleq1 |
|
102 |
|
oveq1 |
|
103 |
102
|
eleq2d |
|
104 |
101 103
|
anbi12d |
|
105 |
104
|
ac6sfi |
|
106 |
83 100 105
|
syl2anc |
|
107 |
|
ffn |
|
108 |
|
simpl |
|
109 |
108
|
ralimi |
|
110 |
107 109
|
anim12i |
|
111 |
|
vex |
|
112 |
111
|
elixp |
|
113 |
110 112
|
sylibr |
|
114 |
113
|
adantl |
|
115 |
84
|
biimpa |
|
116 |
|
ixpfn |
|
117 |
115 116
|
syl |
|
118 |
117
|
adantr |
|
119 |
|
simpr |
|
120 |
119
|
ralimi |
|
121 |
120
|
ad2antll |
|
122 |
85
|
elixp |
|
123 |
118 121 122
|
sylanbrc |
|
124 |
|
simp-4l |
|
125 |
50
|
ad2antrr |
|
126 |
125 114
|
sseldd |
|
127 |
124 58
|
syl |
|
128 |
126 127
|
eleqtrrd |
|
129 |
|
simp-4r |
|
130 |
|
fveq2 |
|
131 |
130
|
cbvmptv |
|
132 |
131
|
oveq2i |
|
133 |
20 132
|
eqtr4di |
|
134 |
133
|
fveq2d |
|
135 |
5 134
|
eqtrid |
|
136 |
135
|
fveq2d |
|
137 |
136
|
oveqdr |
|
138 |
|
eqid |
|
139 |
|
eqid |
|
140 |
6
|
adantr |
|
141 |
7
|
adantr |
|
142 |
|
fvexd |
|
143 |
|
metxmet |
|
144 |
15 143
|
syl |
|
145 |
144
|
adantlr |
|
146 |
|
simprl |
|
147 |
133
|
fveq2d |
|
148 |
2 147
|
eqtrid |
|
149 |
148
|
adantr |
|
150 |
146 149
|
eleqtrd |
|
151 |
72
|
ad2antll |
|
152 |
|
rpgt0 |
|
153 |
152
|
ad2antll |
|
154 |
132 138 3 4 139 140 141 142 145 150 151 153
|
prdsbl |
|
155 |
137 154
|
eqtrd |
|
156 |
124 128 129 155
|
syl12anc |
|
157 |
123 156
|
eleqtrrd |
|
158 |
114 157
|
jca |
|
159 |
158
|
ex |
|
160 |
159
|
eximdv |
|
161 |
|
df-rex |
|
162 |
160 161
|
syl6ibr |
|
163 |
106 162
|
mpd |
|
164 |
163
|
ex |
|
165 |
|
eliun |
|
166 |
164 165
|
syl6ibr |
|
167 |
166
|
ssrdv |
|
168 |
82 167
|
eqssd |
|
169 |
|
iuneq1 |
|
170 |
169
|
eqeq1d |
|
171 |
170
|
rspcev |
|
172 |
69 168 171
|
syl2anc |
|
173 |
43 172
|
exlimddv |
|
174 |
173
|
ralrimiva |
|
175 |
|
istotbnd3 |
|
176 |
26 174 175
|
sylanbrc |
|