Metamath Proof Explorer


Theorem prdsval

Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsval.p P = S 𝑠 R
prdsval.k K = Base S
prdsval.i φ dom R = I
prdsval.b φ B = x I Base R x
prdsval.a φ + ˙ = f B , g B x I f x + R x g x
prdsval.t φ × ˙ = f B , g B x I f x R x g x
prdsval.m φ · ˙ = f K , g B x I f R x g x
prdsval.j φ , ˙ = f B , g B S x I f x 𝑖 R x g x
prdsval.o φ O = 𝑡 TopOpen R
prdsval.l φ ˙ = f g | f g B x I f x R x g x
prdsval.d φ D = f B , g B sup ran x I f x dist R x g x 0 * <
prdsval.h φ H = f B , g B x I f x Hom R x g x
prdsval.x φ ˙ = a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
prdsval.s φ S W
prdsval.r φ R Z
Assertion prdsval φ P = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙

Proof

Step Hyp Ref Expression
1 prdsval.p P = S 𝑠 R
2 prdsval.k K = Base S
3 prdsval.i φ dom R = I
4 prdsval.b φ B = x I Base R x
5 prdsval.a φ + ˙ = f B , g B x I f x + R x g x
6 prdsval.t φ × ˙ = f B , g B x I f x R x g x
7 prdsval.m φ · ˙ = f K , g B x I f R x g x
8 prdsval.j φ , ˙ = f B , g B S x I f x 𝑖 R x g x
9 prdsval.o φ O = 𝑡 TopOpen R
10 prdsval.l φ ˙ = f g | f g B x I f x R x g x
11 prdsval.d φ D = f B , g B sup ran x I f x dist R x g x 0 * <
12 prdsval.h φ H = f B , g B x I f x Hom R x g x
13 prdsval.x φ ˙ = a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
14 prdsval.s φ S W
15 prdsval.r φ R Z
16 df-prds 𝑠 = s V , r V x dom r Base r x / v f v , g v x dom r f x Hom r x g x / h Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x
17 16 a1i φ 𝑠 = s V , r V x dom r Base r x / v f v , g v x dom r f x Hom r x g x / h Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x
18 vex r V
19 18 rnex ran r V
20 19 uniex ran r V
21 20 rnex ran ran r V
22 21 uniex ran ran r V
23 baseid Base = Slot Base ndx
24 23 strfvss Base r x ran r x
25 fvssunirn r x ran r
26 rnss r x ran r ran r x ran ran r
27 uniss ran r x ran ran r ran r x ran ran r
28 25 26 27 mp2b ran r x ran ran r
29 24 28 sstri Base r x ran ran r
30 29 rgenw x dom r Base r x ran ran r
31 iunss x dom r Base r x ran ran r x dom r Base r x ran ran r
32 30 31 mpbir x dom r Base r x ran ran r
33 22 32 ssexi x dom r Base r x V
34 ixpssmap2g x dom r Base r x V x dom r Base r x x dom r Base r x dom r
35 33 34 ax-mp x dom r Base r x x dom r Base r x dom r
36 ovex x dom r Base r x dom r V
37 36 ssex x dom r Base r x x dom r Base r x dom r x dom r Base r x V
38 35 37 mp1i φ s = S r = R x dom r Base r x V
39 simpr φ s = S r = R r = R
40 39 fveq1d φ s = S r = R r x = R x
41 40 fveq2d φ s = S r = R Base r x = Base R x
42 41 ixpeq2dv φ s = S r = R x I Base r x = x I Base R x
43 39 dmeqd φ s = S r = R dom r = dom R
44 3 ad2antrr φ s = S r = R dom R = I
45 43 44 eqtrd φ s = S r = R dom r = I
46 45 ixpeq1d φ s = S r = R x dom r Base r x = x I Base r x
47 4 ad2antrr φ s = S r = R B = x I Base R x
48 42 46 47 3eqtr4d φ s = S r = R x dom r Base r x = B
49 prdsvallem f v , g v x dom r f x Hom r x g x V
50 49 a1i φ s = S r = R v = B f v , g v x dom r f x Hom r x g x V
51 simpr φ s = S r = R v = B v = B
52 45 adantr φ s = S r = R v = B dom r = I
53 52 ixpeq1d φ s = S r = R v = B x dom r f x Hom r x g x = x I f x Hom r x g x
54 40 fveq2d φ s = S r = R Hom r x = Hom R x
55 54 oveqd φ s = S r = R f x Hom r x g x = f x Hom R x g x
56 55 ixpeq2dv φ s = S r = R x I f x Hom r x g x = x I f x Hom R x g x
57 56 adantr φ s = S r = R v = B x I f x Hom r x g x = x I f x Hom R x g x
58 53 57 eqtrd φ s = S r = R v = B x dom r f x Hom r x g x = x I f x Hom R x g x
59 51 51 58 mpoeq123dv φ s = S r = R v = B f v , g v x dom r f x Hom r x g x = f B , g B x I f x Hom R x g x
60 12 ad3antrrr φ s = S r = R v = B H = f B , g B x I f x Hom R x g x
61 59 60 eqtr4d φ s = S r = R v = B f v , g v x dom r f x Hom r x g x = H
62 simplr φ s = S r = R v = B h = H v = B
63 62 opeq2d φ s = S r = R v = B h = H Base ndx v = Base ndx B
64 40 fveq2d φ s = S r = R + r x = + R x
65 64 oveqd φ s = S r = R f x + r x g x = f x + R x g x
66 45 65 mpteq12dv φ s = S r = R x dom r f x + r x g x = x I f x + R x g x
67 66 adantr φ s = S r = R v = B x dom r f x + r x g x = x I f x + R x g x
68 51 51 67 mpoeq123dv φ s = S r = R v = B f v , g v x dom r f x + r x g x = f B , g B x I f x + R x g x
69 68 adantr φ s = S r = R v = B h = H f v , g v x dom r f x + r x g x = f B , g B x I f x + R x g x
70 5 ad4antr φ s = S r = R v = B h = H + ˙ = f B , g B x I f x + R x g x
71 69 70 eqtr4d φ s = S r = R v = B h = H f v , g v x dom r f x + r x g x = + ˙
72 71 opeq2d φ s = S r = R v = B h = H + ndx f v , g v x dom r f x + r x g x = + ndx + ˙
73 40 fveq2d φ s = S r = R r x = R x
74 73 oveqd φ s = S r = R f x r x g x = f x R x g x
75 45 74 mpteq12dv φ s = S r = R x dom r f x r x g x = x I f x R x g x
76 75 adantr φ s = S r = R v = B x dom r f x r x g x = x I f x R x g x
77 51 51 76 mpoeq123dv φ s = S r = R v = B f v , g v x dom r f x r x g x = f B , g B x I f x R x g x
78 77 adantr φ s = S r = R v = B h = H f v , g v x dom r f x r x g x = f B , g B x I f x R x g x
79 6 ad4antr φ s = S r = R v = B h = H × ˙ = f B , g B x I f x R x g x
80 78 79 eqtr4d φ s = S r = R v = B h = H f v , g v x dom r f x r x g x = × ˙
81 80 opeq2d φ s = S r = R v = B h = H ndx f v , g v x dom r f x r x g x = ndx × ˙
82 63 72 81 tpeq123d φ s = S r = R v = B h = H Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x = Base ndx B + ndx + ˙ ndx × ˙
83 simp-4r φ s = S r = R v = B h = H s = S
84 83 opeq2d φ s = S r = R v = B h = H Scalar ndx s = Scalar ndx S
85 simpllr φ s = S r = R v = B s = S
86 85 fveq2d φ s = S r = R v = B Base s = Base S
87 86 2 eqtr4di φ s = S r = R v = B Base s = K
88 40 fveq2d φ s = S r = R r x = R x
89 88 oveqd φ s = S r = R f r x g x = f R x g x
90 45 89 mpteq12dv φ s = S r = R x dom r f r x g x = x I f R x g x
91 90 adantr φ s = S r = R v = B x dom r f r x g x = x I f R x g x
92 87 51 91 mpoeq123dv φ s = S r = R v = B f Base s , g v x dom r f r x g x = f K , g B x I f R x g x
93 92 adantr φ s = S r = R v = B h = H f Base s , g v x dom r f r x g x = f K , g B x I f R x g x
94 7 ad4antr φ s = S r = R v = B h = H · ˙ = f K , g B x I f R x g x
95 93 94 eqtr4d φ s = S r = R v = B h = H f Base s , g v x dom r f r x g x = · ˙
96 95 opeq2d φ s = S r = R v = B h = H ndx f Base s , g v x dom r f r x g x = ndx · ˙
97 40 fveq2d φ s = S r = R 𝑖 r x = 𝑖 R x
98 97 oveqd φ s = S r = R f x 𝑖 r x g x = f x 𝑖 R x g x
99 45 98 mpteq12dv φ s = S r = R x dom r f x 𝑖 r x g x = x I f x 𝑖 R x g x
100 99 adantr φ s = S r = R v = B x dom r f x 𝑖 r x g x = x I f x 𝑖 R x g x
101 85 100 oveq12d φ s = S r = R v = B s x dom r f x 𝑖 r x g x = S x I f x 𝑖 R x g x
102 51 51 101 mpoeq123dv φ s = S r = R v = B f v , g v s x dom r f x 𝑖 r x g x = f B , g B S x I f x 𝑖 R x g x
103 102 adantr φ s = S r = R v = B h = H f v , g v s x dom r f x 𝑖 r x g x = f B , g B S x I f x 𝑖 R x g x
104 8 ad4antr φ s = S r = R v = B h = H , ˙ = f B , g B S x I f x 𝑖 R x g x
105 103 104 eqtr4d φ s = S r = R v = B h = H f v , g v s x dom r f x 𝑖 r x g x = , ˙
106 105 opeq2d φ s = S r = R v = B h = H 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x = 𝑖 ndx , ˙
107 84 96 106 tpeq123d φ s = S r = R v = B h = H Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x = Scalar ndx S ndx · ˙ 𝑖 ndx , ˙
108 82 107 uneq12d φ s = S r = R v = B h = H Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙
109 simpllr φ s = S r = R v = B h = H r = R
110 109 coeq2d φ s = S r = R v = B h = H TopOpen r = TopOpen R
111 110 fveq2d φ s = S r = R v = B h = H 𝑡 TopOpen r = 𝑡 TopOpen R
112 9 ad4antr φ s = S r = R v = B h = H O = 𝑡 TopOpen R
113 111 112 eqtr4d φ s = S r = R v = B h = H 𝑡 TopOpen r = O
114 113 opeq2d φ s = S r = R v = B h = H TopSet ndx 𝑡 TopOpen r = TopSet ndx O
115 51 sseq2d φ s = S r = R v = B f g v f g B
116 40 fveq2d φ s = S r = R r x = R x
117 116 breqd φ s = S r = R f x r x g x f x R x g x
118 45 117 raleqbidv φ s = S r = R x dom r f x r x g x x I f x R x g x
119 118 adantr φ s = S r = R v = B x dom r f x r x g x x I f x R x g x
120 115 119 anbi12d φ s = S r = R v = B f g v x dom r f x r x g x f g B x I f x R x g x
121 120 opabbidv φ s = S r = R v = B f g | f g v x dom r f x r x g x = f g | f g B x I f x R x g x
122 121 adantr φ s = S r = R v = B h = H f g | f g v x dom r f x r x g x = f g | f g B x I f x R x g x
123 10 ad4antr φ s = S r = R v = B h = H ˙ = f g | f g B x I f x R x g x
124 122 123 eqtr4d φ s = S r = R v = B h = H f g | f g v x dom r f x r x g x = ˙
125 124 opeq2d φ s = S r = R v = B h = H ndx f g | f g v x dom r f x r x g x = ndx ˙
126 40 fveq2d φ s = S r = R dist r x = dist R x
127 126 oveqd φ s = S r = R f x dist r x g x = f x dist R x g x
128 45 127 mpteq12dv φ s = S r = R x dom r f x dist r x g x = x I f x dist R x g x
129 128 adantr φ s = S r = R v = B x dom r f x dist r x g x = x I f x dist R x g x
130 129 rneqd φ s = S r = R v = B ran x dom r f x dist r x g x = ran x I f x dist R x g x
131 130 uneq1d φ s = S r = R v = B ran x dom r f x dist r x g x 0 = ran x I f x dist R x g x 0
132 131 supeq1d φ s = S r = R v = B sup ran x dom r f x dist r x g x 0 * < = sup ran x I f x dist R x g x 0 * <
133 51 51 132 mpoeq123dv φ s = S r = R v = B f v , g v sup ran x dom r f x dist r x g x 0 * < = f B , g B sup ran x I f x dist R x g x 0 * <
134 133 adantr φ s = S r = R v = B h = H f v , g v sup ran x dom r f x dist r x g x 0 * < = f B , g B sup ran x I f x dist R x g x 0 * <
135 11 ad4antr φ s = S r = R v = B h = H D = f B , g B sup ran x I f x dist R x g x 0 * <
136 134 135 eqtr4d φ s = S r = R v = B h = H f v , g v sup ran x dom r f x dist r x g x 0 * < = D
137 136 opeq2d φ s = S r = R v = B h = H dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < = dist ndx D
138 114 125 137 tpeq123d φ s = S r = R v = B h = H TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < = TopSet ndx O ndx ˙ dist ndx D
139 simpr φ s = S r = R v = B h = H h = H
140 139 opeq2d φ s = S r = R v = B h = H Hom ndx h = Hom ndx H
141 62 sqxpeqd φ s = S r = R v = B h = H v × v = B × B
142 139 oveqd φ s = S r = R v = B h = H 2 nd a h c = 2 nd a H c
143 139 fveq1d φ s = S r = R v = B h = H h a = H a
144 40 fveq2d φ s = S r = R comp r x = comp R x
145 144 oveqd φ s = S r = R 1 st a x 2 nd a x comp r x c x = 1 st a x 2 nd a x comp R x c x
146 145 oveqd φ s = S r = R d x 1 st a x 2 nd a x comp r x c x e x = d x 1 st a x 2 nd a x comp R x c x e x
147 45 146 mpteq12dv φ s = S r = R x dom r d x 1 st a x 2 nd a x comp r x c x e x = x I d x 1 st a x 2 nd a x comp R x c x e x
148 147 ad2antrr φ s = S r = R v = B h = H x dom r d x 1 st a x 2 nd a x comp r x c x e x = x I d x 1 st a x 2 nd a x comp R x c x e x
149 142 143 148 mpoeq123dv φ s = S r = R v = B h = H d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
150 141 62 149 mpoeq123dv φ s = S r = R v = B h = H a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
151 13 ad4antr φ s = S r = R v = B h = H ˙ = a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
152 150 151 eqtr4d φ s = S r = R v = B h = H a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = ˙
153 152 opeq2d φ s = S r = R v = B h = H comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = comp ndx ˙
154 140 153 preq12d φ s = S r = R v = B h = H Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = Hom ndx H comp ndx ˙
155 138 154 uneq12d φ s = S r = R v = B h = H TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙
156 108 155 uneq12d φ s = S r = R v = B h = H Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙
157 50 61 156 csbied2 φ s = S r = R v = B f v , g v x dom r f x Hom r x g x / h Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙
158 38 48 157 csbied2 φ s = S r = R x dom r Base r x / v f v , g v x dom r f x Hom r x g x / h Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙
159 158 anasss φ s = S r = R x dom r Base r x / v f v , g v x dom r f x Hom r x g x / h Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙
160 14 elexd φ S V
161 15 elexd φ R V
162 tpex Base ndx B + ndx + ˙ ndx × ˙ V
163 tpex Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ V
164 162 163 unex Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ V
165 tpex TopSet ndx O ndx ˙ dist ndx D V
166 prex Hom ndx H comp ndx ˙ V
167 165 166 unex TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙ V
168 164 167 unex Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙ V
169 168 a1i φ Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙ V
170 17 159 160 161 169 ovmpod φ S 𝑠 R = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙
171 1 170 eqtrid φ P = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx ˙ dist ndx D Hom ndx H comp ndx ˙