Metamath Proof Explorer


Theorem prdsvalstr

Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion prdsvalstr Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙ Struct 1 15

Proof

Step Hyp Ref Expression
1 unass Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙ = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙
2 eqid Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D
3 2 imasvalstr Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Struct 1 12
4 1nn0 1 0
5 4nn 4
6 4 5 decnncl 14
7 homndx Hom ndx = 14
8 4nn0 4 0
9 5nn 5
10 4lt5 4 < 5
11 4 8 9 10 declt 14 < 15
12 4 9 decnncl 15
13 ccondx comp ndx = 15
14 6 7 11 12 13 strle2 Hom ndx H comp ndx ˙ Struct 14 15
15 2nn0 2 0
16 2lt4 2 < 4
17 4 15 5 16 declt 12 < 14
18 3 14 17 strleun Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙ Struct 1 15
19 1 18 eqbrtrri Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Hom ndx H comp ndx ˙ Struct 1 15